19,882 research outputs found

    Segment Anything Is Not Always Perfect: An Investigation of SAM on Different Real-world Applications

    Full text link
    Recently, Meta AI Research approaches a general, promptable Segment Anything Model (SAM) pre-trained on an unprecedentedly large segmentation dataset (SA-1B). Without a doubt, the emergence of SAM will yield significant benefits for a wide array of practical image segmentation applications. In this study, we conduct a series of intriguing investigations into the performance of SAM across various applications, particularly in the fields of natural images, agriculture, manufacturing, remote sensing, and healthcare. We analyze and discuss the benefits and limitations of SAM and provide an outlook on future development of segmentation tasks. Note that our work does not intend to propose new algorithms or theories, but rather provide a comprehensive view of SAM in practice. This work is expected to provide insights that facilitate future research activities toward generic segmentation.Comment: Tech Repor

    Metabolomic analysis of human oral cancer cells with adenylate kinase 2 or phosphorylate glycerol kinase 1 inhibition.

    Get PDF
    The purpose of this study was to use liquid chromatography-mass spectrometry (LC-MS) with XCMS for a quantitative metabolomic analysis of UM1 and UM2 oral cancer cells after knockdown of metabolic enzyme adenylate kinase 2 (AK2) or phosphorylate glycerol kinase 1 (PGK1). UM1 and UM2 cells were initially transfected with AK2 siRNA, PGK1 siRNA or scrambled control siRNA, and then analyzed with LC-MS for metabolic profiles. XCMS analysis of the untargeted metabolomics data revealed a total of 3200-4700 metabolite features from the transfected UM1 or UM2 cancer cells and 369-585 significantly changed metabolites due to AK2 or PGK1 suppression. In addition, cluster analysis showed that a common group of metabolites were altered by AK2 knockdown or by PGK1 knockdown between the UM1 and UM2 cells. However, the set of significantly changed metabolites due to AK2 knockdown was found to be distinct from those significantly changed by PGK1 knockdown. Our study has demonstrated that LC-MS with XCMS is an efficient tool for metabolomic analysis of oral cancer cells, and knockdown of different genes results in distinct changes in metabolic phenotypes in oral cancer cells

    Oridonin Up-regulates Expression of P21 and Induces Autophagy and Apoptosis in Human Prostate Cancer Cells

    Get PDF
    Background: Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. However, the mechanism is not fully understood

    A numerical study of the settling of non-spherical particles in quiescent water

    Get PDF
    Settling of non-spherical particles is poorly understood with previous studies having focused mainly on spherical particles. Here, a series of particle-resolved direct numerical simulations are conducted using FLOW-3D (commercial computational fluid dynamics software) for spheres and five regular, non-spherical shapes of sediment particles, i.e., prolate spheroid, oblate spheroid, cylinder, disk, and cube. The Galileo number varies from 0.248 to 360, and the particle Reynolds number Rep ranges from 0.002 77 to 562. The results show that a non-spherical particle may experience larger drag and, consequently, attain a lower terminal velocity than an equivalent sphere. If Rep is sufficiently small, the terminal velocity is less affected by particle shape as characterized by the particle aspect ratio. For relatively large Rep, the shape effect (represented by the Corey shape factor) becomes more significant. Empirical correlations are derived for the dimensionless characteristic time t95∗ and displacement s95∗ of particle settling, which show that t95∗ remains constant in the Stokes regime (Rep &amp;lt; 1) and decreases with increasing Rep in the intermediate regime (1 ≤ Rep &amp;lt; 103), whereas s95∗ increases progressively with increasing Rep over the simulated range. It is also found that in the Stokes regime, particle orientation remains essentially unchanged during settling, and so the terminal velocity is governed by the initial orientation. In the intermediate regime, a particle provisionally settling at an unstable orientation self-readjusts to a stable equilibrium state, such that the effect of initial orientation on the terminal velocity is negligible. Moreover, an unstable initial orientation can enhance the vertical displacement and may promote vortex shedding.</jats:p
    • …
    corecore