8 research outputs found

    Several New [Fe]Hydrogenase Model Complexes with a Single Fe Center Ligated to an Acylmethyl(hydroxymethyl)­pyridine or Acylmethyl(hydroxy)pyridine Ligand

    No full text
    We have developed two novel synthetic methods, by which two types of mononuclear Fe model complexes for the active site of [Fe]­hydrogenase are successfully synthesized. The first type of 2-acylmethyl-6-hydroxymethylpyridine-containing complexes, [2-COCH<sub>2</sub>-6-HOCH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N]­Fe­(CO)<sub>2</sub>G (<b>1</b>, G = PhCO<sub>2</sub>; <b>2</b>, PhCOS; <b>3</b>, PhCS<sub>2</sub>; <b>4</b>, 2-S-6-MeC<sub>5</sub>H<sub>3</sub>N), were prepared by a “one-pot” method involving reaction of 2-TsO-6-HOCH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N (Ts = 4-MeC<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>) with Na<sub>2</sub>Fe­(CO)<sub>4</sub> followed by treatment of the resulting Fe(0) intermediate [Na­(2-CH<sub>2</sub>-6-HOCH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>4</sub>] (<b>M1</b>) with (PhCO<sub>2</sub>)<sub>2</sub>, (PhCOS)<sub>2</sub>, (PhCS<sub>2</sub>)<sub>2</sub>, and (2-S-6-MeC<sub>5</sub>H<sub>3</sub>N)<sub>2</sub> in 49–72% yields, respectively. The second type of 2-acylmethyl-6-hydroxypyridine-containing complexes, (2-COCH<sub>2</sub>-6-HOC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(2-SCO-6-RC<sub>5</sub>H<sub>3</sub>N) (<b>9a</b>, R = MeO; <b>9b</b>, R = PhS), could be prepared via a multiple-step synthetic method. This method involves (i) treatment of 2-ClCO-6-RC<sub>5</sub>H<sub>3</sub>N (R = MeO, PhS) with NaSH followed by acidification with diluted HCl to give 2-HSCO-6-RC<sub>5</sub>H<sub>3</sub>N (<b>5a</b>, R = MeO; <b>5b</b>, R = PhS); (ii) further treatment of <b>5a</b>,<b>b</b> with KOH to afford 2-KSCO-6-RC<sub>5</sub>H<sub>3</sub>N (<b>6a</b>, R = MeO; <b>6b</b>, R = PhS); (iii) treatment of 2-TsOCH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N (PMB = 4-MeOC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>) with Na<sub>2</sub>Fe­(CO)<sub>4</sub> followed by treatment of the resulting Fe(0) intermediate [Na­(2-CH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>4</sub>] (<b>M2</b>) with Br<sub>2</sub> or I<sub>2</sub> to produce (2-COCH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>3</sub>X (<b>7a</b>, X = Br; <b>7b</b>, X = I); (iv) further treatment of <b>7a</b>,<b>b</b> with <b>6a</b>,<b>b</b> to yield (2-COCH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(2-S-6-RC<sub>5</sub>H<sub>3</sub>N) (<b>8a</b>, R = MeO; <b>8b</b>, R = PhS); and (v) finally, removal of the PMB groups from <b>8a</b>,<b>b</b> under the action of deprotecting reagent CF<sub>3</sub>CO<sub>2</sub>H/EtSH to give complexes <b>9a</b>,<b>b</b>. All compounds <b>1</b>–<b>4</b> and <b>5a</b>,<b>b</b>–<b>9a</b>,<b>b</b> with the exception of <b>7b</b> are new and have been characterized by elemental analysis, spectroscopy, and, particularly for <b>1</b>, <b>4</b>, and <b>7a</b>–<b>9a</b>, X-ray crystallography

    Several New [Fe]Hydrogenase Model Complexes with a Single Fe Center Ligated to an Acylmethyl(hydroxymethyl)­pyridine or Acylmethyl(hydroxy)pyridine Ligand

    No full text
    We have developed two novel synthetic methods, by which two types of mononuclear Fe model complexes for the active site of [Fe]­hydrogenase are successfully synthesized. The first type of 2-acylmethyl-6-hydroxymethylpyridine-containing complexes, [2-COCH<sub>2</sub>-6-HOCH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N]­Fe­(CO)<sub>2</sub>G (<b>1</b>, G = PhCO<sub>2</sub>; <b>2</b>, PhCOS; <b>3</b>, PhCS<sub>2</sub>; <b>4</b>, 2-S-6-MeC<sub>5</sub>H<sub>3</sub>N), were prepared by a “one-pot” method involving reaction of 2-TsO-6-HOCH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N (Ts = 4-MeC<sub>6</sub>H<sub>4</sub>SO<sub>2</sub>) with Na<sub>2</sub>Fe­(CO)<sub>4</sub> followed by treatment of the resulting Fe(0) intermediate [Na­(2-CH<sub>2</sub>-6-HOCH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>4</sub>] (<b>M1</b>) with (PhCO<sub>2</sub>)<sub>2</sub>, (PhCOS)<sub>2</sub>, (PhCS<sub>2</sub>)<sub>2</sub>, and (2-S-6-MeC<sub>5</sub>H<sub>3</sub>N)<sub>2</sub> in 49–72% yields, respectively. The second type of 2-acylmethyl-6-hydroxypyridine-containing complexes, (2-COCH<sub>2</sub>-6-HOC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(2-SCO-6-RC<sub>5</sub>H<sub>3</sub>N) (<b>9a</b>, R = MeO; <b>9b</b>, R = PhS), could be prepared via a multiple-step synthetic method. This method involves (i) treatment of 2-ClCO-6-RC<sub>5</sub>H<sub>3</sub>N (R = MeO, PhS) with NaSH followed by acidification with diluted HCl to give 2-HSCO-6-RC<sub>5</sub>H<sub>3</sub>N (<b>5a</b>, R = MeO; <b>5b</b>, R = PhS); (ii) further treatment of <b>5a</b>,<b>b</b> with KOH to afford 2-KSCO-6-RC<sub>5</sub>H<sub>3</sub>N (<b>6a</b>, R = MeO; <b>6b</b>, R = PhS); (iii) treatment of 2-TsOCH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N (PMB = 4-MeOC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>) with Na<sub>2</sub>Fe­(CO)<sub>4</sub> followed by treatment of the resulting Fe(0) intermediate [Na­(2-CH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>4</sub>] (<b>M2</b>) with Br<sub>2</sub> or I<sub>2</sub> to produce (2-COCH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>3</sub>X (<b>7a</b>, X = Br; <b>7b</b>, X = I); (iv) further treatment of <b>7a</b>,<b>b</b> with <b>6a</b>,<b>b</b> to yield (2-COCH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(2-S-6-RC<sub>5</sub>H<sub>3</sub>N) (<b>8a</b>, R = MeO; <b>8b</b>, R = PhS); and (v) finally, removal of the PMB groups from <b>8a</b>,<b>b</b> under the action of deprotecting reagent CF<sub>3</sub>CO<sub>2</sub>H/EtSH to give complexes <b>9a</b>,<b>b</b>. All compounds <b>1</b>–<b>4</b> and <b>5a</b>,<b>b</b>–<b>9a</b>,<b>b</b> with the exception of <b>7b</b> are new and have been characterized by elemental analysis, spectroscopy, and, particularly for <b>1</b>, <b>4</b>, and <b>7a</b>–<b>9a</b>, X-ray crystallography

    Synthetic and Structural Studies of 2‑Acylmethyl-6-R-Difunctionalized Pyridine Ligand-Containing Iron Complexes Related to [Fe]-Hydrogenase

    No full text
    As active site models of [Fe]-hydrogenase, tridentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing complexes η<sup>3</sup>-(2-COCH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(L<sub>1</sub>) (<b>4</b>, L<sub>1</sub> = I; <b>5</b>, SCN; <b>6</b>, PhCS<sub>2</sub>) were prepared via the following multistep reactions: (i) etherification of 2-MeO<sub>2</sub>C-6-HOC<sub>5</sub>H<sub>3</sub>N with ClCH<sub>2</sub>OMe to give 2-MeO<sub>2</sub>C-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N (<b>1</b>), (ii) reduction of <b>1</b> with NaBH<sub>4</sub> to give 2-HOCH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N (<b>2</b>), (iii) esterification of <b>2</b> with 4-toluenesulfonyl chloride to give 2-TsOCH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N (<b>3</b>), (iv) nucleophilic substitution of <b>3</b> with Na<sub>2</sub>Fe­(CO)<sub>4</sub> followed by treatment of the resulting Fe(0) intermediate Na­[(2-CH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>4</sub>] (<b>M</b><sub><b>1</b></sub>) with I<sub>2</sub> to give complex <b>4</b>, and (v) condensation of <b>4</b> with KSCN and PhCS<sub>2</sub>K to give complexes <b>5</b> and <b>6</b>, respectively. In contrast to the preparation of complexes <b>4</b>–<b>6</b>, bidentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing model complexes η<sup>2</sup>-(2-COCH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(I)­(L<sub>2</sub>) (<b>7</b>, L<sub>2</sub> = PPh<sub>3</sub>; <b>8</b>, Cy-C<sub>6</sub>H<sub>11</sub>NC) and η<sup>2</sup>-(2-COCH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(L<sub>3</sub>) (<b>9</b>, L<sub>3</sub> = 2-SC<sub>5</sub>H<sub>4</sub>N; <b>10</b>, 8-SC<sub>9</sub>H<sub>6</sub>N) were prepared by ligand exchange reactions of <b>4</b> with PPh<sub>3</sub>, Cy-C<sub>6</sub>H<sub>11</sub>NC, 2-KSC<sub>5</sub>H<sub>4</sub>N, and 8-KSC<sub>9</sub>H<sub>6</sub>N, respectively. Particularly interesting is that the tridentate 2,6-bis­(acylmethyl)­pyridine- and 2-acylmethyl-6-arylthiomethylpyridine-containing model complexes η<sup>3</sup>-[2,6-(COCH<sub>2</sub>)<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N]­Fe­(CO)<sub>2</sub>(L<sub>4</sub>) (<b>11</b>, L<sub>4</sub> = PPh<sub>3</sub>; <b>12</b>, CO) and η<sup>3</sup>-2-(COCH<sub>2</sub>-6-ArSCH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(ArS) (<b>13</b>, ArS = PhS; <b>14</b>, 2-S-5-MeC<sub>4</sub>H<sub>2</sub>O) were obtained, unexpectedly, when 2,6-(TsOCH<sub>2</sub>)<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N reacted with Na<sub>2</sub>Fe­(CO)<sub>4</sub> followed by treatment of the resulting mixture with ligands PPh<sub>3</sub> and CO or disulfides (PhS)<sub>2</sub> and (2-S-5-MeC<sub>4</sub>H<sub>2</sub>O)<sub>2</sub>. Reactions of ligand precursors <b>3</b> and 2,6-(TsOCH<sub>2</sub>)<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N with Na<sub>2</sub>Fe­(CO)<sub>4</sub> were monitored by in situ IR spectroscopy, and the possible pathways for producing complexes <b>4</b> and <b>11</b>–<b>14</b> via intermediates Na­[(2-CH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>4</sub>] (<b>M</b><sub><b>1</b></sub>), Na­[(2-CH<sub>2</sub>-6-TsOCH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>4</sub>] (<b>M</b><sub><b>2</b></sub>), and (2-COCH<sub>2</sub>-6-CH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>3</sub> (<b>M</b><sub><b>3</b></sub>) are suggested. New compounds <b>1</b>–<b>14</b> were characterized by elemental analysis, spectroscopy, and, for some of them, X-ray crystallography

    A Novel Acylmethylpyridinol Ligand Containing Dinuclear Iron Complex Closely Related to [Fe]-Hydrogenase

    No full text
    On synthesizing the PMB-protected mononuclear iron complexes [2-C­(O)­CH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N]­Fe­(CO)<sub>3</sub>I (<b>6</b>) and [2-C­(O)­CH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N]­Fe­(CO)<sub>2</sub>(2-SC<sub>5</sub>H<sub>4</sub>N) (<b>7</b>), the novel acylmethylpyridinol ligand containing dinuclear iron complex [2-C­(O)­CH<sub>2</sub>-6-HOC<sub>5</sub>H<sub>3</sub>N]­Fe<sub>2</sub>(CO)<sub>4</sub>[2′-C­(O)­CH<sub>2</sub>-6′-OC<sub>5</sub>H<sub>3</sub>N]­(2-SC<sub>5</sub>H<sub>4</sub>N) (<b>9</b>), which is closely related to the active site of [Fe]-hydrogenase, has been prepared unexpectedly via removal of the PMB protecting group from <b>7</b> under the action of excess trifluoroacetic acid. The [Fe]-hydrogenase-related complex <b>9</b> and its precursor complexes <b>6</b> and <b>7</b> have been fully characterized by elemental analysis, spectroscopy, and X-ray crystallography

    Synthetic and Structural Studies of 2‑Acylmethyl-6-R-Difunctionalized Pyridine Ligand-Containing Iron Complexes Related to [Fe]-Hydrogenase

    No full text
    As active site models of [Fe]-hydrogenase, tridentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing complexes η<sup>3</sup>-(2-COCH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(L<sub>1</sub>) (<b>4</b>, L<sub>1</sub> = I; <b>5</b>, SCN; <b>6</b>, PhCS<sub>2</sub>) were prepared via the following multistep reactions: (i) etherification of 2-MeO<sub>2</sub>C-6-HOC<sub>5</sub>H<sub>3</sub>N with ClCH<sub>2</sub>OMe to give 2-MeO<sub>2</sub>C-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N (<b>1</b>), (ii) reduction of <b>1</b> with NaBH<sub>4</sub> to give 2-HOCH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N (<b>2</b>), (iii) esterification of <b>2</b> with 4-toluenesulfonyl chloride to give 2-TsOCH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N (<b>3</b>), (iv) nucleophilic substitution of <b>3</b> with Na<sub>2</sub>Fe­(CO)<sub>4</sub> followed by treatment of the resulting Fe(0) intermediate Na­[(2-CH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>4</sub>] (<b>M</b><sub><b>1</b></sub>) with I<sub>2</sub> to give complex <b>4</b>, and (v) condensation of <b>4</b> with KSCN and PhCS<sub>2</sub>K to give complexes <b>5</b> and <b>6</b>, respectively. In contrast to the preparation of complexes <b>4</b>–<b>6</b>, bidentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing model complexes η<sup>2</sup>-(2-COCH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(I)­(L<sub>2</sub>) (<b>7</b>, L<sub>2</sub> = PPh<sub>3</sub>; <b>8</b>, Cy-C<sub>6</sub>H<sub>11</sub>NC) and η<sup>2</sup>-(2-COCH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(L<sub>3</sub>) (<b>9</b>, L<sub>3</sub> = 2-SC<sub>5</sub>H<sub>4</sub>N; <b>10</b>, 8-SC<sub>9</sub>H<sub>6</sub>N) were prepared by ligand exchange reactions of <b>4</b> with PPh<sub>3</sub>, Cy-C<sub>6</sub>H<sub>11</sub>NC, 2-KSC<sub>5</sub>H<sub>4</sub>N, and 8-KSC<sub>9</sub>H<sub>6</sub>N, respectively. Particularly interesting is that the tridentate 2,6-bis­(acylmethyl)­pyridine- and 2-acylmethyl-6-arylthiomethylpyridine-containing model complexes η<sup>3</sup>-[2,6-(COCH<sub>2</sub>)<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N]­Fe­(CO)<sub>2</sub>(L<sub>4</sub>) (<b>11</b>, L<sub>4</sub> = PPh<sub>3</sub>; <b>12</b>, CO) and η<sup>3</sup>-2-(COCH<sub>2</sub>-6-ArSCH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>2</sub>(ArS) (<b>13</b>, ArS = PhS; <b>14</b>, 2-S-5-MeC<sub>4</sub>H<sub>2</sub>O) were obtained, unexpectedly, when 2,6-(TsOCH<sub>2</sub>)<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N reacted with Na<sub>2</sub>Fe­(CO)<sub>4</sub> followed by treatment of the resulting mixture with ligands PPh<sub>3</sub> and CO or disulfides (PhS)<sub>2</sub> and (2-S-5-MeC<sub>4</sub>H<sub>2</sub>O)<sub>2</sub>. Reactions of ligand precursors <b>3</b> and 2,6-(TsOCH<sub>2</sub>)<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N with Na<sub>2</sub>Fe­(CO)<sub>4</sub> were monitored by in situ IR spectroscopy, and the possible pathways for producing complexes <b>4</b> and <b>11</b>–<b>14</b> via intermediates Na­[(2-CH<sub>2</sub>-6-MeOCH<sub>2</sub>OC<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>4</sub>] (<b>M</b><sub><b>1</b></sub>), Na­[(2-CH<sub>2</sub>-6-TsOCH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>4</sub>] (<b>M</b><sub><b>2</b></sub>), and (2-COCH<sub>2</sub>-6-CH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N)­Fe­(CO)<sub>3</sub> (<b>M</b><sub><b>3</b></sub>) are suggested. New compounds <b>1</b>–<b>14</b> were characterized by elemental analysis, spectroscopy, and, for some of them, X-ray crystallography

    A Novel Acylmethylpyridinol Ligand Containing Dinuclear Iron Complex Closely Related to [Fe]-Hydrogenase

    No full text
    On synthesizing the PMB-protected mononuclear iron complexes [2-C­(O)­CH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N]­Fe­(CO)<sub>3</sub>I (<b>6</b>) and [2-C­(O)­CH<sub>2</sub>-6-PMBOC<sub>5</sub>H<sub>3</sub>N]­Fe­(CO)<sub>2</sub>(2-SC<sub>5</sub>H<sub>4</sub>N) (<b>7</b>), the novel acylmethylpyridinol ligand containing dinuclear iron complex [2-C­(O)­CH<sub>2</sub>-6-HOC<sub>5</sub>H<sub>3</sub>N]­Fe<sub>2</sub>(CO)<sub>4</sub>[2′-C­(O)­CH<sub>2</sub>-6′-OC<sub>5</sub>H<sub>3</sub>N]­(2-SC<sub>5</sub>H<sub>4</sub>N) (<b>9</b>), which is closely related to the active site of [Fe]-hydrogenase, has been prepared unexpectedly via removal of the PMB protecting group from <b>7</b> under the action of excess trifluoroacetic acid. The [Fe]-hydrogenase-related complex <b>9</b> and its precursor complexes <b>6</b> and <b>7</b> have been fully characterized by elemental analysis, spectroscopy, and X-ray crystallography
    corecore