2,203 research outputs found

    Realization of Two-Dimensional Spin-orbit Coupling for Bose-Einstein Condensates

    Full text link
    Cold atoms with laser-induced spin-orbit (SO) interactions provide intriguing new platforms to explore novel quantum physics beyond natural conditions of solids. Recent experiments demonstrated the one-dimensional (1D) SO coupling for boson and fermion gases. However, realization of 2D SO interaction, a much more important task, remains very challenging. Here we propose and experimentally realize, for the first time, 2D SO coupling and topological band with 87^{87}Rb degenerate gas through a minimal optical Raman lattice scheme, without relying on phase locking or fine tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in the momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including the highly-sought-after topological superfluid phases.Comment: 27 pages, 5 figure

    Stability of Excited Dressed States with Spin-Orbit Coupling

    Full text link
    We study the decay behaviors of ultracold atoms in metastable states with spin-orbit coupling (SOC), and demonstrate that there are two SOC-induced decay mechanisms. One arises from the trapping potential and the other is due to interatomic collision. We present general schemes for calculating decay rates from these two mechanisms, and illustrate how the decay rates can be controlled by experimental parameters.We experimentally measure the decay rates over a broad parameter region, and the results agree well with theoretical calculations. This work provides an insight for both quantum simulation involving metastable dressed states and studies on few-body problems with SO coupling.Comment: 4.5 pages, 4 figures, the latest versio

    Investigating a Global Collapsing Hub-Filament Cloud G326.611+0.811

    Full text link
    We present the dynamics study toward the G326.611+0.811 (G326) hub-filament-system (HFS) cloud using the new APEX observations of both 13^{13}CO and C18^{18}O (J = 2-1). The G326 HFS cloud constitutes a central hub and at least four hub-composing filaments that are divided into a major branch of filaments (F1, and F2) and a side branch (F3-F5). The cloud holds ongoing high-mass star formation as characterised by three massive dense clumps (i.e., 370-1100 M⊙M_{\odot} and 0.14-0.16 g cm−2^{-2} for C1-C3) with the high clump-averaged mass infalling rates (>10−3>10^{-3} M⊙M_{\odot} yr−1^{-1}) within in the major filament branch, and the associated point sources bright at 70 μ\mum typical of young protostars. Along the five filaments, the velocity gradients are found in both 13^{13}CO and C18^{18}O (J = 2-1) emission, suggesting that the filament-aligned gravitational collapse toward the central hub (i.e., C2) is being at work for high-mass star formation therein. Moreover, a periodic velocity oscillation along the major filament branch is revealed in both 13^{13}CO and C18^{18}O (J = 2-1) emission with a characteristic wavelength of ∼\sim3.5 pc and an amplitude of ∼\sim0.31-0.38 km s−1^{-1}. We suggest that this pattern of velocity oscillation in G326 could arise from the clump-forming gas motions induced by gravitational instability. Taking into account the prevalent velocity gradients, the fragmentation of the major branch of filaments, and the ongoing collapse of the three massive dense clumps, it is indicative that G326 is a HFS undergoing global collapse.Comment: 21 pages, 13 figures, 2 tables, Accepted for publication in Ap

    Differences in regional homogeneity between patients with Crohn's disease with and without abdominal pain revealed by resting-state functional magnetic resonance imaging

    Get PDF
    Abnormal pain processing in the central nervous system may be related to abdominal pain in patients with Crohn's disease (CD). The purpose of this study was to investigate changes in resting-state brain activity in patients with CD in remission and its relationship with the presence of abdominal pain. Twenty-five patients with CD and with abdominal pain, 25 patients with CD and without abdominal pain, and 32 healthy subjects were scanned using a 3.0-T functional magnetic resonance imaging scanner. Regional homogeneity (ReHo) was used to assess resting-state brain activity. Daily pain scores were collected 1 week before functional magnetic resonance imaging. We found that patients with abdominal pain exhibited lower ReHo values in the insula, middle cingulate cortex (MCC), and supplementary motor area and higher ReHo values in the temporal pole. In contrast, patients without abdominal pain exhibited lower ReHo values in the hippocampal/parahippocampal cortex and higher ReHo values in the dorsomedial prefrontal cortex (all P < 0.05, corrected). The ReHo values of the insula and MCC were significantly negatively correlated with daily pain scores for patients with abdominal pain (r = -0.53, P = 0.008 and r = -0.61, P = 0.002, respectively). These findings suggest that resting-state brain activities are different between remissive patients with CD with and without abdominal pain and that abnormal activities in insula and MCC are closely related to the severity of abdominal pain
    • …
    corecore