1 research outputs found

    Directional Electron Transfer in Chromophore-Labeled Quantum-Sized Au<sub>25</sub> Clusters: Au<sub>25</sub> as an Electron Donor

    No full text
    Novel Au<sub>25</sub>(C<sub>6</sub>S)<sub>17</sub>PyS clusters (pyrene-functionalized Au<sub>25</sub> clusters) showing interesting electrochemical and optical properties are synthesized and characterized. Significant fluorescence quenching is observed for pyrene attached to Au<sub>25</sub> clusters, suggesting strong excited-state interactions. Time-resolved fluorescence upconversion and transient absorption measurements are utilized to understand the excited-state dynamics and possible interfacial electron- and energy-transfer pathways. Electrochemical investigations suggest the possibility of electron transfer from Au<sub>25</sub> clusters to the attached pyrene. Fluorescence upconversion measurements have shown faster luminescence decay for the case of pyrene attached to Au<sub>25</sub> clusters pointing toward ultrafast photoinduced electron/energy-transfer pathways. Femtosecond transient absorption measurements have revealed the presence of the anion radical of pyrene in the excited-state absorption, suggesting the directional electron transfer from Au<sub>25</sub> clusters to pyrene. The rate of forward electron transfer from the Au<sub>25</sub> cluster to pyrene is ultrafast (∼580 fs), as observed with femtosecond fluorescence upconversion and transient absorption
    corecore