33,880 research outputs found

    Electronic transport in a Cantor stub waveguide network

    Full text link
    We investigate theoretically, the character of electronic eigenstates and transmission properties of a one dimensional array of stubs with Cantor geometry. Within the framework of real space re-normalization group (RSRG) and transfer matrix methods we analyze the resonant transmission and extended wave-functions in a Cantor array of stubs, which lack translational order. Apart from resonant states with high transmittance we unravel a whole family of wave-functions supported by such an array clamped between two-infinite ordered leads, which have an extended character in the RSRG scheme, but, for such states the transmission coefficient across the lead-sample-lead structure decays following a power-law as the system grows in size. This feature is explained from renormalization group ideas and may lead to the possibility of trapping of electronic, optical or acoustic waves in such hierarchical geometries

    Period halving of Persistent Currents in Mesoscopic Mobius ladders

    Full text link
    We investigate the period halving of persistent currents(PCs) of non-interacting electrons in isolated mesoscopic M\"{o}bius ladders without disorder, pierced by Aharonov-Bhom flux. The mechanisms of the period halving effect depend on the parity of the number of electrons as well as on the interchain hopping. Although the data of PCs in mesoscopic systems are sample-specific, some simple rules are found in the canonical ensemble average, such as all the odd harmonics of the PCs disappear, and the signals of even harmonics are non-negative. {PACS number(s): 73.23.Ra, 73.23.-b, 68.65.-k}Comment: 6 Pages with 3 EPS figure

    Ground state of spin-1 Bose-Einstein condensates with spin-orbit coupling in a Zeeman field

    Full text link
    We systematically investigate the weakly trapped spin-1 Bose-Einstein condensates with spin-orbit coupling in an external Zeeman field. We find that the mean-field ground state favors either a magnetized standing wave phase or plane wave phase when the strength of Zeeman field is below a critical value related to the strength of spin-orbit coupling. Zeeman field can induce the phase transition between standing wave and plane wave phases, and we determine the phase boundary analytically and numerically. The magnetization of these two phases responds to the external magnetic field in a very unique manner, the linear Zeeman effect magnetizes the standing wave phase along the direction of the magnetic field, but the quadratic one demagnetizes the plane wave phase. When the strength of Zeeman field surpasses the critical value, the system is completely polarized to a ferromagnetic state or polar state with zero momentum

    An optical fibre dynamic instrumented palpation sensor for the characterisation of biological tissue

    Get PDF
    AbstractThe diagnosis of prostate cancer using invasive techniques (such as biopsy and blood tests for prostate-specific antigen) and non-invasive techniques (such as digital rectal examination and trans-rectal ultrasonography) may be enhanced by using an additional dynamic instrumented palpation approach to prostate tissue classification. A dynamically actuated membrane sensor/actuator has been developed that incorporates an optical fibre Fabry–Pérot interferometer to record the displacement of the membrane when it is pressed on to different tissue samples. The membrane sensor was tested on a silicon elastomer prostate model with enlarged and stiffer material on one side to simulate early stage prostate cancer. The interferometer measurement was found to have high dynamic range and accuracy, with a minimum displacement resolution of ±0.4μm over a 721μm measurement range. The dynamic response of the membrane sensor when applied to different tissue types changed depending on the stiffness of the tissue being measured. This demonstrates the feasibility of an optically tracked dynamic palpation technique for classifying tissue type based on the dynamic response of the sensor/actuator

    On-Chip Matching Networks for Radio-Frequency Single-Electron-Transistors

    Full text link
    In this letter, we describe operation of a radio-frequency superconducting single electron transistor (RF-SSET) with an on-chip superconducting LC matching network consisting of a spiral inductor L and its capacitance to ground. The superconducting network has a lower parasitic capacitance and gives a better matching for the RF-SSET than does a commercial chip inductor. Moreover, the superconducting network has negligibly low dissipation, leading to sensitive response to changes in the RF-SSET impedance. The charge sensitivity 2.4*10^-6 e/(Hz)^1/2 in the sub-gap region and energy sensitivity of 1.9 hbar indicate that the RF-SSET is operating in the vicinity of the shot noise limit.Comment: 3 pages, 3 figures, REVTeX 4. To appear in Appl. Phys. Let

    Viewing the Proton Through "Color"-Filters

    Full text link
    While the form factors and parton distributions provide separately the shape of the proton in coordinate and momentum spaces, a more powerful imaging of the proton structure can be obtained through phase-space distributions. Here we introduce the Wigner-type quark and gluon distributions which depict a full-3D proton at every fixed light-cone momentum, like what seen through momentum("color")-filters. After appropriate phase-space reductions, the Wigner distributions are related to the generalized parton distributions (GPD's) and transverse-momentum dependent parton distributions which are measurable in high-energy experiments. The new interpretation of GPD's provides a classical way to visualize the orbital motion of the quarks which is known to be the key to the spin and magnetic moment of the proton.Comment: 4 page

    Measurement of filling factor 5/2 quasiparticle interference: observation of charge e/4 and e/2 period oscillations

    Full text link
    A standing problem in low dimensional electron systems is the nature of the 5/2 fractional quantum Hall state: its elementary excitations are a focus for both elucidating the state's properties and as candidates in methods to perform topological quantum computation. Interferometric devices may be employed to manipulate and measure quantum Hall edge excitations. Here we use a small area edge state interferometer designed to observe quasiparticle interference effects. Oscillations consistent in detail with the Aharanov-Bohm effect are observed for integer and fractional quantum Hall states (filling factors 2, 5/3, and 7/3) with periods corresponding to their respective charges and magnetic field positions. With these as charge calibrations, at 5/2 filling factor and at lowest temperatures periodic transmission through the device consistent with quasiparticle charge e/4 is observed. The principal finding of this work is that in addtion to these e/4 oscillations, periodic structures corresponding to e/2 are also observed at 5/2 and at lowest temperatures. Properties of the e/4 and e/2 oscillations are examined with the device sensitivity sufficient to observe temperature evolution of the 5/2 quasiparticle interference. In the model of quasiparticle interference, this presence of an effective e/2 period may empirically reflect an e/2 quasiparticle charge, or may reflect multiple passes of the e/4 quasiparticle around the interferometer. These results are discussed within a picture of e/4 quasiparticle excitations potentially possessing non-Abelian statistics. These studies demonstrate the capacity to perform interferometry on 5/2 excitations and reveal properties important for understanding this state and its excitations.Comment: version 3 contains additional data beyond version 2, 26 pages, 8 figures PNAS 081259910

    Investigation of the energy dependence of the orbital light curve in LS 5039

    Full text link
    LS 5039 is so far the best studied γ\gamma-ray binary system at multi-wavelength energies. A time resolved study of its spectral energy distribution (SED) shows that above 1 keV its power output is changing along its binary orbit as well as being a function of energy. To disentangle the energy dependence of the power output as a function of orbital phase, we investigated in detail the orbital light curves as derived with different telescopes at different energy bands. We analysed the data from all existing \textit{INTEGRAL}/IBIS/ISGRI observations of the source and generated the most up-to-date orbital light curves at hard X-ray energies. In the γ\gamma-ray band, we carried out orbital phase-resolved analysis of \textit{Fermi}-LAT data between 30 MeV and 10 GeV in 5 different energy bands. We found that, at \lesssim100 MeV and \gtrsim1 TeV the peak of the γ\gamma-ray emission is near orbital phase 0.7, while between \sim100 MeV and \sim1 GeV it moves close to orbital phase 1.0 in an orbital anti-clockwise manner. This result suggests that the transition region in the SED at soft γ\gamma-rays (below a hundred MeV) is related to the orbital phase interval of 0.5--1.0 but not to the one of 0.0--0.5, when the compact object is "behind" its companion. Another interesting result is that between 3 and 20 GeV no orbital modulation is found, although \textit{Fermi}-LAT significantly (\sim18σ\sigma) detects LS 5039. This is consistent with the fact that at these energies, the contributions to the overall emission from the inferior conjunction phase region (INFC, orbital phase 0.45 to 0.9) and from the superior conjunction phase region (SUPC, orbital phase 0.9 to 0.45) are equal in strength. At TeV energies the power output is again dominant in the INFC region and the flux peak occurs at phase \sim0.7.Comment: 7 pages, 6 figures, accepted for publication in MNRA
    corecore