30 research outputs found

    Management and Prognostic Factors for Thyroid Carcinoma Showing Thymus-Like Elements (CASTLE): A Case Series Study

    Get PDF
    Introduction: This study aims to identify the prognostic factors that influence therapeutic modalities for thyroid carcinoma showing thymus-like elements (CASTLE).Materials and Methods: Reported studies with CASTLE patients published between 2004 and 2018 were retrieved from a cross-database literature search. Three patients treated in our institute were also included as one case series. Standardized data collection was performed; data pertaining to clinical stages, treatment regimens, and survival time were collected and statistically analyzed.Results: Up to 26 case series of CASTLE were selected, including 51 males and 38 females with a median age of 48 years. Follow-up time ranged from 2 to 362 months and the median survival time was 158.03 months. Lymph node metastasis and tumor invasion of adjacent tissue both showed a significant negative effect on survival (p = 0.001 and 0.013, respectively). Radiotherapy significantly improved survival (p = 0.034), while neck dissection significantly prolonged survival only in patients with extrathyroidal extension (p = 0.043).Conclusions: Extrathyroidal infiltration and nodal metastasis are important factors in cancer outcomes. Radiation therapy appears to be important for better outcomes in CASTLE patients, and neck dissection is recommended for patients with extrathyroidal extension

    Research and Design of Fixed Photovoltaic Support Structure Based on SAP2000

    No full text
    In the solar photovoltaic power station project, PV support is one of the main structures, and fixed photovoltaic PV support is one of the most commonly used stents. For the the actual demand in a Japanese photovoltaic power, SAP2000 finite element analysis software is used in this paper, based on Japanese Industrial Standard (JIS C 8955-2011), describing the system of fixed photovoltaic support structure design and calculation method and process. The results show that: (1) according to the general requirements of 4 rows and 5 columns fixed photovoltaic support, the typical permanent load of the PV support is 4679.4 N, the wind load being 1.05 kN/m2, the snow load being 0.89 kN/m2 and the seismic load is 5877.51 N; (2) by theoretical calculation of the two ends extended beam model, the beam span under the rail is determined 2200 mm; (3) by the way of using the single factor experiment, through the calculation and analysis of SAP2000, the three best supporting points of the support of the W stent are determined; (4) by comprehensive simulation, the optimal parameters for the rail, beam, support and bolt are 60× 60× 1.0, 60× 60× 1.0, 40× 50× 2.0, and M10 respectively

    Research and Design of Fixed Photovoltaic Support Structure Based on SAP2000

    No full text
    In the solar photovoltaic power station project, PV support is one of the main structures, and fixed photovoltaic PV support is one of the most commonly used stents. For the the actual demand in a Japanese photovoltaic power, SAP2000 finite element analysis software is used in this paper, based on Japanese Industrial Standard (JIS C 8955-2011), describing the system of fixed photovoltaic support structure design and calculation method and process. The results show that: (1) according to the general requirements of 4 rows and 5 columns fixed photovoltaic support, the typical permanent load of the PV support is 4679.4 N, the wind load being 1.05 kN/m2, the snow load being 0.89 kN/m2 and the seismic load is 5877.51 N; (2) by theoretical calculation of the two ends extended beam model, the beam span under the rail is determined 2200 mm; (3) by the way of using the single factor experiment, through the calculation and analysis of SAP2000, the three best supporting points of the support of the W stent are determined; (4) by comprehensive simulation, the optimal parameters for the rail, beam, support and bolt are 60× 60× 1.0, 60× 60× 1.0, 40× 50× 2.0, and M10 respectively

    Enhanced Photocatalytic Activities for Degradation of Dyes and Drugs by Crystalline Bismuth Ferrite-Modified Graphene Hybrid Aerogel

    No full text
    Industrial wastewater contains diverse toxic dyes and drugs, which pollute the environment and poison creatures. Utilizing photocatalysts has been accepted to be an effective method to degrade water pollutions using solar light. Crystalline bismuth ferrite (Bi2Fe4O9) with a band gap of 1.9–2.0 eV is expected to be one of the most promising candidates for photocatalysts in the visible light region. Amorphous graphene is also a promising candidate as a photocatalyst owing to its excellent electronic and optical properties. Herein, a composite of Bi2Fe4O9/graphene aerogels (GAs) was prepared with a two-step hydrothermal method. The prepared Bi2Fe4O9 powders were confirmed to be successfully doped into GAs and evenly dispersed between graphene sheets. The Bi2Fe4O9/GA composite was utilized to perform photodegradation for organic dyes and antibiotic drugs under visible light irradiation, yielding efficiencies of 90.22%, 92.3%, 71.8% and 78.58% within 330 min for methyl orange, methylene blue, Rhodamine B and tetracycline hydrochloride, respectively. Such distinct photocatalytic activities overwhelmed the pure Bi2Fe4O9 powders of 14.10%, 22.19%, 13.98% and 48.08%, respectively. Additionally, the composite produced a degradation rate constant of 0.00623 min−1 for methylene blue, which is significantly faster than that of 0.00073 min−1 obtained by the pure powder. These results provide an innovative strategy for designing 3D visible-light-responsive photocatalysts combined with graphene aerogel for water purification

    Enhanced Photocatalytic Activities for Degradation of Dyes and Drugs by Crystalline Bismuth Ferrite-Modified Graphene Hybrid Aerogel

    No full text
    Industrial wastewater contains diverse toxic dyes and drugs, which pollute the environment and poison creatures. Utilizing photocatalysts has been accepted to be an effective method to degrade water pollutions using solar light. Crystalline bismuth ferrite (Bi2Fe4O9) with a band gap of 1.9–2.0 eV is expected to be one of the most promising candidates for photocatalysts in the visible light region. Amorphous graphene is also a promising candidate as a photocatalyst owing to its excellent electronic and optical properties. Herein, a composite of Bi2Fe4O9/graphene aerogels (GAs) was prepared with a two-step hydrothermal method. The prepared Bi2Fe4O9 powders were confirmed to be successfully doped into GAs and evenly dispersed between graphene sheets. The Bi2Fe4O9/GA composite was utilized to perform photodegradation for organic dyes and antibiotic drugs under visible light irradiation, yielding efficiencies of 90.22%, 92.3%, 71.8% and 78.58% within 330 min for methyl orange, methylene blue, Rhodamine B and tetracycline hydrochloride, respectively. Such distinct photocatalytic activities overwhelmed the pure Bi2Fe4O9 powders of 14.10%, 22.19%, 13.98% and 48.08%, respectively. Additionally, the composite produced a degradation rate constant of 0.00623 min−1 for methylene blue, which is significantly faster than that of 0.00073 min−1 obtained by the pure powder. These results provide an innovative strategy for designing 3D visible-light-responsive photocatalysts combined with graphene aerogel for water purification

    Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy

    No full text
    Abstract The exogenous excitation requirement and electron-hole recombination are the key elements limiting the application of catalytic therapies. Here a tumor microenvironment (TME)-specific self-triggered thermoelectric nanoheterojunction (Bi0.5Sb1.5Te3/CaO2 nanosheets, BST/CaO2 NSs) with self-built-in electric field facilitated charge separation is fabricated. Upon exposure to TME, the CaO2 coating undergoes rapid hydrolysis, releasing Ca2+, H2O2, and heat. The resulting temperature difference on the BST NSs initiates a thermoelectric effect, driving reactive oxygen species production. H2O2 not only serves as a substrate supplement for ROS generation but also dysregulates Ca2+ channels, preventing Ca2+ efflux. This further exacerbates calcium overload-mediated therapy. Additionally, Ca2+ promotes DC maturation and tumor antigen presentation, facilitating immunotherapy. It is worth noting that the CaO2 NP coating hydrolyzes very slowly in normal cells, releasing Ca2+ and O2 without causing any adverse effects. Tumor-specific self-triggered thermoelectric nanoheterojunction combined catalytic therapy, ion interference therapy, and immunotherapy exhibit excellent antitumor performance in female mice

    Additional file 1: Table S1. of T2 relaxation time for intervertebral disc degeneration in patients with upper back pain: initial results on the clinical use of 3.0 Tesla MRI

    No full text
    Classification of intervertebral disc degeneration as reported by Pfirrmann et al. [6]. The table descripted the details of classification of intervertebral disc degeneration by Pfirrmann grades. (DOCX 16 kb
    corecore