55 research outputs found

    On ends of finite-volume noncompact mainfolds of nonpositive curvature

    Full text link
    In this paper we confirm a folklore conjecture which suggests that for a complete noncompact manifold MM of finite volume with sectional curvature −1≀K≀0-1 \leq K \leq 0, if the universal cover of MM is a visibility manifold, then the fundamental group of each end of MM is almost nilpotent. Applications on the geometry and topology of noncompact nonpositively curved manifolds will be discussed.Comment: 35 pages, 2 figures. Comments are welcom

    New Environmental-Thermal Barrier Coatings for Ultrahigh Temperature Alloys

    Get PDF
    Please click Additional Files below to see the full abstract

    Cathode materials for rechargeable aluminum batteries : current status and progress

    Get PDF
    This work was financially supported by the National Natural Science Foundation of China (No. 21477046, 21277060 and 51361130151), Key Technology R&D Program of Shandong Province (No. 2016ZDJS11A03), Science Development Project of Shandong Province (No. 2014GGX104004) and Natural Science Foundation of Shandong Province (No. ZR2015EM044).Peer reviewedPostprin

    A New Method to Improve Running Economy and Maximal Aerobic Power in Athletes: Endurance Training With Periodic Carbon Monoxide Inhalation

    Get PDF
    Background: Altitude training stimulates erythropoietin hormone (EPO) release and increases blood hemoglobin (Hb) mass, which may result in improved oxygen (O-2) transport capacity. It was hypothesized in the present study that periodic inhalation of carbon monoxide (CO) might elicit similar physiological adaptations compared to altitude training.Methods: Twelve male college student athletes, who were well-trained soccer players, participated. They performed a 4-week treadmill-training program, five times a week. Participants were randomly assigned into an experimental group with inhaling CO (INCO) (1 mL/kg body weight for 2 min) in O-2 (4 L) before all training sessions and a control group without inhaling CO (NOCO). CO and EPO concentrations in venous blood were first measured acutely at the 1st, 2nd, 4th, 6th, and 8th hour after INCO, and total hemoglobin mass (tHb), running economy and VO(2)max were measured before and after the 4 weeks training intervention.Results: HbCO% increased from 0.7 to 4.4% (P Conclusion: Acutely, EPO increased sharply post CO inhalation, peaking at 4 h post inhalation. 4-weeks of training with CO inhalation before exercise sessions improved tHb and VO(2)max as well as running economy, suggesting that moderate CO inhalation could be a new method to improve the endurance performance in athletes.</div

    Slippery for scaling resistance in membrane distillation: a novel porous micropillared superhydrophobic surface

    Get PDF
    Scaling in membrane distillation (MD) is a key issue in desalination of concentrated saline water, where the interface property between the membrane and the feed become critical. In this paper, a slippery mechanism was explored as an innovative concept to understand the scaling behavior in membrane distillation for a soluble salt, NaCl. The investigation was based on a novel design of a superhydrophobic polyvinylidene fluoride (PVDF) membrane with micro-pillar arrays (MP-PVDF) using a micromolding phase separation (ÎŒPS) method. The membrane showed a contact angle of 166.0 ± 2.3° and the sliding angle of 15.8 ± 3.3°. After CF4 plasma treatment, the resultant membrane (CF4-MP-PVDF) showed a reduced sliding angle of 3.0o. In direct contact membrane distillation (DCMD), the CF4-MP-PVDF membrane illustrated excellent anti-scaling in concentrating saturated NaCl feed. Characterization of the used membranes showed that aggregation of NaCl crystals occurred on the control PVDF and MP-PVDF membranes, but not on the CF4-MP-PVDF membrane. To understand this phenomenon, a “slippery” theory was introduced and correlated the sliding angle to the slippery surface of CF4-MP-PVDF and its anti-scaling property. This work proposed a well-defined physical and theoretical platform for investigating scaling problems in membrane distillation and beyond

    Bacterial dimethylsulfoniopropionate biosynthesis in the East China Sea

    Get PDF
    Dimethylsulfoniopropionate (DMSP) is one of Earth’s most abundant organosulfur molecules. Recently, many marine heterotrophic bacteria were shown to produce DMSP, but few studies have combined culture-dependent and independent techniques to study their abundance, distribution, diversity and activity in seawater or sediment environments. Here we investigate bacterial DMSP production potential in East China Sea (ECS) samples. Total DMSP (DMSPt) concentration in ECS seawater was highest in surface waters (SW) where phytoplankton were most abundant, and it decreased with depth to near bottom waters. However, the percentage of DMSPt mainly apportioned to bacteria increased from the surface to the near bottom water. The highest DMSP concentration was detected in ECS oxic surface sediment (OSS) where phytoplankton were not abundant. Bacteria with the genetic potential to produce DMSP and relevant biosynthesis gene transcripts were prominent in all ECS seawater and sediment samples. Their abundance also increased with depth and was highest in the OSS samples. Microbial enrichments for DMSP-producing bacteria from sediment and seawater identified many novel taxonomic groups of DMSP-producing bacteria. Different profiles of DMSP-producing bacteria existed between seawater and sediment samples and there are still novel DMSP-producing bacterial groups to be discovered in these environments. This study shows that heterotrophic bacteria significantly contribute to the marine DMSP pool and that their contribution increases with water depth and is highest in seabed surface sediment where DMSP catabolic potential is lowest. Furthermore, distinct bacterial groups likely produce DMSP in seawater and sediment samples, and many novel producing taxa exist, especially in the sediment

    Photocatalytic Performance of a Novel MOF/BiFeO3 Composite

    No full text
    In this study, MOF/BiFeO3 composite (MOF, metal-organic framework) has been synthesized successfully through a one-pot hydrothermal method. The MOF/BiFeO3 composite samples, pure MOF samples and BiFeO3 samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and by UV–vis spectrophotometry. The results and analysis reveal that MOF/BiFeO3 composite has better photocatalytic behavior for methylene blue (MB) compared to pure MOF and pure BiFeO3. The enhancement of photocatalytic performance should be due to the introduction of MOF change the surface morphology of BiFeO3, which will increase the contact area with MB. This composing strategy of MOF/BiFeO3 composite may bring new insight into the designing of highly efficient photocatalysts

    The Biocontrol Effects of the Bacillus licheniformis W10 Strain and Its Antifungal Protein Against Brown Rot in Peach

    Get PDF
    The biocontrol effects of Bacillus licheniformis W10 bacterial suspension and its antifungal protein on peach brown rot caused by Monilinia fructicola in storage peach fruits and the effects on fruit quality were investigated. The results showed that the fruit disease suppression of B. licheniformis W10 bacterial suspension and antifungal protein were significantly higher than that of the control. Inoculation of bacterial suspension and antifungal protein prior to M. fructicola gave a better biocontrol effect, and the higher concentrations of bacterial (1 × 1010 cfu · mL−1) and antifungal protein (3.0 mg · mL−1) performed better control effects. The environmental conditions, such as temperature and humidity, affected biocontrol effects of W10 bacterial suspension and antifungal protein. The influence of environment conditions on the activity of antifungal protein was less than that on bacterial suspension. Moreover, lower temperature (4 °C) and relative humidity (RH 70%–75%) were favorable to prevent peach brown rot by W10 bacterial suspension and its antifungal protein. The W10 bacterial suspension and antifungal protein amended with calcium [0.1% Ca(NO3)2] could enhance the biocontrol effects, and obviously put off the occurrence of peach brown rot. In addition, the bacterial suspension and antifungal protein significantly reduced the natural decay rates of peach fruits during storage, and the effects were equal to carbendazim. Moreover, both W10 bacterial suspension and antifungal protein treatments did not have effects on external and internal fruit appearance, such as chromatic aberration parameter L* of flesh, flesh firmness, soluble solids content and weight loss. Therefore, the B. licheniformis W10 is a potential biocontrol factor for peach brown rot
    • 

    corecore