53 research outputs found

    Unsupervised Deep Epipolar Flow for Stationary or Dynamic Scenes

    Full text link
    Unsupervised deep learning for optical flow computation has achieved promising results. Most existing deep-net based methods rely on image brightness consistency and local smoothness constraint to train the networks. Their performance degrades at regions where repetitive textures or occlusions occur. In this paper, we propose Deep Epipolar Flow, an unsupervised optical flow method which incorporates global geometric constraints into network learning. In particular, we investigate multiple ways of enforcing the epipolar constraint in flow estimation. To alleviate a "chicken-and-egg" type of problem encountered in dynamic scenes where multiple motions may be present, we propose a low-rank constraint as well as a union-of-subspaces constraint for training. Experimental results on various benchmarking datasets show that our method achieves competitive performance compared with supervised methods and outperforms state-of-the-art unsupervised deep-learning methods.Comment: CVPR 201

    Evaluering Interface betingelsen, randkraver og samt frysning/melting front ved fasesendring material i hus-kompositt-veggen, basert pÄ eksperiment temperatur data

    Get PDF
    Effektiv bruk energi i et hus/bygg er en drivende utvikling i byggenĂŠring i de siste Ă„r. Det er en komplisert-omfang-og sammensatt problem for byggteknologi. For nevnt noe problemstiller, hvordan/hvilken energi kilde som elektrisk, fjernvarme, sol-, vind- som dekker huse behov og samt ha en gunstig effekt pĂ„ natur, kostnad, og samfunnsforhold. Og, hvordan fĂ„r vi optimal/gunstig fordeling energi i hus/bygg, og samt redusere varme tap fra hus (eller husveggen) til ute-omgivelsen. For Ă„ ha innsikt i dette kompleks bygg-energi, vi vil begrensing av hele kompleks Energi-bruk-hus ned til energi i husveggene. Denne master oppgaven, fokus vi pĂ„ Varme (energi) fordeling, varme tap, og varme lagring i huset veggen. Forskjellige mellom temperaturen ute og romtemperaturen (temperaturen gradient) Ă„rsak at varme bevegelsen fra hĂžy- til lav temperaturen (varme/energi-tap). Og, det er opptrer ofte flere transportmekanismer sammen, som for eksempel varmeledning, konveksjon og strĂ„ling. Hastighet og mengde energi tap avhengige med mange forskjellige termisk-veggen-material egenskaper og temperatur gradient. Energilagring generelt, har /hatt viktige tema i forskning i de siste 20 Ă„rene, og det finnes svĂŠrt mye og variert informasjon i litteraturen. Videre, varme lagring i veggen er sterk avhengig med vegg-materialer termisk egenskaper, som for eksempel lav- eller hĂžy varmekonduktivitet, varmekapasitet og densitet. En annet mĂ„te Ă„ se pĂ„ material varme lagring pĂ„, er at material har overgangsfase egenskap. Det er velkjent i Termisk Fysikk teori at det krever mye energi for at et material skifte fase (mens temperaturen bli konstant- Latent varme). Og videre, ved melting (fra solid til vĂŠske) eller frysning (fra vĂŠske til solid) prosess, som vil absorbere (lagring-) eller frigjort (Avgir) energi. Ved Ă„ utnytte nĂ„ material absorbere eller/og frigjort varme ved fasesovegang, kan vi lagre eller fordeling varme i bygg pĂ„ en effektiv mĂ„te. Vi skal studere varme fordeling, varme lagring og varme tap i husveggen. Vi studere energi fordeling i veggen, ved Eksperiment. Det er to-forskjellige type veggen vi setter fokus pĂ„. Den ene er standard hus veggen som er sammensatt av trevirket-isolasjon-trevirket laget, den andre veggen er ‘nytt’ oppsetting, nemlig trevirket-isolasjon-vanns behold-trevirket. Vann-i-behold-sjikt er en faseendring- materialet. Ved Ă„ utsette begge veggen for en temperatur gradient i forskjellige tidsperioder. Vi mĂ„ler temperaturer endring i de to veggene med respekter med tid (transiente tilstand). Basert fĂ„ temperaturen data, kan vi se hvordan temperaturen fordeling for veggen, eller/og nĂ„et er det vann- faseovergang skjedd. Mer enn det, vi kan, basert pĂ„ temperatur lab-data, for Ă„ evaluere noe viktige fysikk konversasjon termisk lov, for eksempel Interface betingelsen mellom 2-forskjellige materiale av vegge-sjikt. For Teori delen: Varme fordeling i standard-veggen kan beskrive ved Fysikk/Matematikk Varmeledning one-dimensjon. Denne varmeledning modell basert pĂ„ varmeledning mekanisme. Ut ifra eksperiment temperaturen data, kan vi evaluere de termisk fysikk konversjon lov. In detaljer, Interface varmefluks balanse lov mellom to-veggen sjikt, eller/og rand kraver mellom vegg overflate og luft-omgivelsen. For veggen med vann-faseendring-sjikt, varmefordeling i faseendring- er mer kompleks enn bare varmeledning transport mekanisme. Faseendring ha stor effekt av varme fordeling. I dette tilfellet, vi vil anvende Fysikk- Entalpi- energi for Ă„ beskrive varme fordeling pĂ„. Ved Ă„ kombinere de varmefordeling fysikk modell og eksperiment lab data, vi er, i stand, til Ă„ studere effekt av varme- absorbere eller/og frigjort ved faseendring prosess pĂ„

    Review on Applications of Lignin in Pavement Engineering: A Recent Survey

    Get PDF
    Lignin is the second-largest plant polymer on Earth after cellulose. About 98% of lignin produced in the papermaking and pulping industry is used for combustion heating or power generation. Less than 2% of lignin is used in more valuable fields, mainly in the formulation of dispersants, adhesives, and surfactants. Asphalt is one of the most important materials in pavement engineering. It is a dark brown complex mixture composed of hydrocarbons with different molecular weights and their non-metallic derivatives. Because the chemical structure of lignin is similar to that of asphalt, it is a carbon-based hydrocarbon material. More researchers studied the application of lignin in pavement engineering. In this paper, the structure, application, and extraction technology of lignin were summarized. This is a review article describing the different applications of lignin in pavement engineering and exploring the prospects of the application. There are three main types of pavement materials that can be used for lignin in pavement engineering, which are asphalt, asphalt mixture, and roadbed soil. In asphalt, lignin can be used as a modifier, extender, emulsifier, antioxidant, and coupling agent. In asphalt mixtures, lignin can be used as an additive. In road base soils, lignin can be used as a soil stabilizer. Furthermore, the article analyzed the application effects of lignin from the life cycle assessment. The conclusions suggest that lignin-modified asphalt exhibits more viscosity and hardness, and its high-temperature resistance and rutting resistance can be significantly improved compared with conventional asphalt. In addition, some lignin-modified asphalt binders exhibit reduced low-temperature crack resistance and fatigue resistance, which can be adjusted and selected according to the climate change in different regions. The performance of lignin as an asphalt mixture additive and asphalt extender has been proved to be feasible. Lignin can also produce good mechanical properties as well as environmental benefits as a soil stabilizer. In summary, lignin plays an important role in asphalt pavement and roadbed soil, and it is likely to be a development trend in the future due to its environmental friendliness and low cost. More research is needed to generalize the application of lignin in pavement engineering

    An epigraphene platform for coherent 1D nanoelectronics

    Get PDF
    Exceptional edge state ballistic transport, first observed in graphene nanoribbons grown on the sidewalls of trenches etched in electronics grade silicon carbide even at room temperature, is shown here to manifest in micron scale epigraphene structures that are conventionally patterned on single crystal silicon carbide substrates. Electronic transport is dominated by a single electronic mode, in which electrons travel large distances without scattering, much like photons in an optical fiber. In addition, robust quantum coherence, non-local transport, and a ground state with half a conductance quantum are also observed. These properties are explained in terms of a ballistic edge state that is pinned at zero energy. The epigraphene platform allows interconnected nanostructures to be patterned, using standard microelectronics methods, to produce phase coherent 1D ballistic networks. This discovery is unique, providing the first feasible route to large scale quantum coherent graphene nanoelectronics, and a possible inroad towards quantum computing

    Creating two-dimensional solid helium via diamond lattice confinement

    Get PDF
    The universe abounds with solid helium in polymorphic forms. Therefore, exploring the allotropes of helium remains vital to our understanding of nature. However, it is challenging to produce, observe and utilize solid helium on the earth because high-pressure techniques are required to solidify helium. Here we report the discovery of room-temperature two-dimensional solid helium through the diamond lattice confinement effect. Controllable ion implantation enables the self-assembly of monolayer helium atoms between {100} diamond lattice planes. Using state-of-the-art integrated differential phase contrast microscopy, we decipher the buckled tetragonal arrangement of solid helium monolayers with an anisotropic nature compressed by the robust diamond lattice. These distinctive helium monolayers, in turn, produce substantial compressive strains to the surrounded diamond lattice, resulting in a large-scale bandgap narrowing up to ~2.2 electron volts. This approach opens up new avenues for steerable manipulation of solid helium for achieving intrinsic strain doping with profound applications
    • 

    corecore