19 research outputs found

    Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    Get PDF
    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions

    Markov Model Applied to Gene Evolution

    No full text
    The study of nucleotide substitution is very important both to our understanding of gene evolution and to reliable estimation of phylogenetic relationships. In this paper nucleotide substitution is assumed to be random and the Markov model is applied to the study of the evolution of genes. Then a non-linear optimization approach is proposed for estimating substitution in real sequences. This substitution is called the "Nucleotide State Transfer Matrix". One of the most important conclusions from this work is that gene sequence evolution conforms to the Markov process. Also, some theoretical evidences for random evolution are given from energy analysis of DNA replication

    Guest Editorial for Special Section on the 7th National Conference on Bioinformatics and Systems Biology of China

    No full text

    DBSubLoc: database of protein subcellular localization

    No full text
    We have built a protein subcellular localization annotation database, the DBSubLoc database, which is available at http://www.bioinfo.tsinghua.edu.cn/dbsubloc.html. Annotations were taken from primary protein databases, model organism genome projects and literature texts, and then were analyzed to dig out the subcellular localization features of the proteins. The proteins are also classified into different categories. Based on sequence alignment, non-redundant subsets of the database have been built, which may provide useful information for subcellular localization prediction. The database now contains >60 000 protein sequences including ∼30 000 protein sequences in the non-redundant data sets. Online download, search and Blast tools are also available

    Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study

    No full text
    Abstract Background We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC) and its mouse model C57BL/6J ApcMin/+, focusing on human 5q22.2 and 18q21.1-q21.2. Methods We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR), and real time quantitative reverse transcriptase PCR (qRT-PCR) analyses on a number of genes of both regions with both human and mouse colon tumors. Results These two regions (5q22.2 and 18q21.1-q21.2) are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer) with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from ApcMin/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors. Conclusions These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC, facilitating the discovery of new CRC driver gene candidates.</p

    Frequent Alteration of the Tumor Suppressor Gene <em>APC</em> in Sporadic Canine Colorectal Tumors

    Get PDF
    <div><p>Sporadic canine colorectal cancers (CRCs) should make excellent models for studying the corresponding human cancers. To molecularly characterize canine CRC, we investigated exonic sequence mutations of <em>adenomatous polyposis coli</em> (<em>APC</em>), the best known tumor suppressor gene of human CRC, in 23 sporadic canine colorectal tumors, including 8 adenomas and 15 adenocarcinomas, via exon-resequencing analysis. As a comparison, we also performed the same sequencing analysis on 10 other genes, either located at human 5q22 (the same locus as <em>APC</em>) or 18q21 (also frequently altered in human CRC), or known to play a role in human carcinogenesis. We noted that <em>APC</em> was the most significantly mutated gene in both canine adenomas and adenocarcinomas among the 11 genes examined. Significantly, we detected large deletions of ≥10 bases, many clustered near the mutation cluster region, as well as single or two base deletions in ∼70% canine tumors of both subtypes. These observations indicate that like in the human, <em>APC</em> is also frequently altered in sporadic colorectal tumors in the dog and its alteration is an early event in canine colorectal tumorigenesis. Our study provides further evidence demonstrating the molecular similarity in pathogenesis between sporadic human and canine CRCs. This work, along with our previous copy number abnormality study, supports that sporadic canine CRCs are valid models of human CRCs at the molecular level.</p> </div
    corecore