2,255 research outputs found

    Hybrid Spam Filtering for Mobile Communication

    Full text link
    Spam messages are an increasing threat to mobile communication. Several mitigation techniques have been proposed, including white and black listing, challenge-response and content-based filtering. However, none are perfect and it makes sense to use a combination rather than just one. We propose an anti-spam framework based on the hybrid of content-based filtering and challenge-response. There is the trade-offs between accuracy of anti-spam classifiers and the communication overhead. Experimental results show how, depending on the proportion of spam messages, different filtering %%@ parameters should be set.Comment: 6 pages, 5 figures, 1 tabl

    Synthesis of a Bi2O2CO3/ZnFe2O4 heterojunction with enhanced photocatalytic activity for visible light irradiation-induced NO removal

    Get PDF
    Although bismuth subcarbonate (Bi2O2CO3), a member of the Aurivillius-phase oxide family, is a promising photocatalyst for the removal of gaseous NO at parts-per-billion level, the large band gap of this material restricts its applications to the UV light region. The above problem can be mitigated by heterojunction fabrication, which not only broadens the light absorbance range, but also inhibits the recombination of photogenerated charge carriers. Herein, we implement this strategy to fabricate a novel Bi2O2CO3/ZnFe2O4 photocatalyst for NO removal under visible light irradiation and authenticate the formation of the above p-n heterojunction using an array of analytical techniques. Notably, the above composite showed activity superior to those of its individual constituents, and the underlying mechanisms of this activity enhancement were probed by density functional theory calculations and photocurrent measurements. Elevated electron/hole separation efficiency caused by the presence of an internal electric field at the Bi2O2CO3/ZnFe2O4 interface was identified as the main reason of the increased photocatalytic activity, with the main active species were determined as center dot O-2(-) and center dot OH by electron spin resonance spectroscopy. Finally, cytotoxicity testing proved the good biocompatibility of Bi2O2CO3/ZnFe2O4. Thus, this work presents deep insights into the preparation and use of a green p-n heterojunction catalyst in various applications

    The X-shaped Radio Galaxy J0725+5835 is Associated with an AGN Pair

    Get PDF
    X-shaped radio galaxies (XRGs) are those that exhibit two pairs of unaligned radio lobes (main radio lobes and wings). One of the promising models for the peculiar morphology is jet reorientation. To clarify this, we conducted a 5 GHz observation with the European VLBI Network (EVN) of XRG J0725+5835, which resembles the archetypal binary active galactic nuclei (AGNs) 0402+379 in radio morphology, but it is larger in angular size. In our observation, two milliarcsecond-scale radio components with nonthermal radio emission are detected. Each of them coincides with an optical counterpart with similar photometric redshift and (optical and infrared) magnitude, corresponding to dual active nuclei. Furthermore, with the improved Very Large Array (VLA) images, we find a bridge between the two radio cores and a jet bending in the region surrounding the companion galaxy. This further supports the interplay between the main and companion galaxies. In addition, we also report the discovery of an arcsecond-scale jet in the companion. Given the projected separation of similar to 100 kpc between the main and companion galaxies, XRG J0725+5835 is likely associated with a dual jetted-AGN system. In both EVN and VLA observations, we find signatures that the jet is changing its direction, which is likely responsible for the X-shaped morphology. For the origin of jet reorientation, several scenarios are discussed

    Liquid crystal display using combined fringe and in-plane electric fields

    Get PDF
    A high performance liquid crystal display using combined fringe and in-plane horizontal electric fields is proposed. The strong electric fields cause more liquid crystals to reorient almost in plane above and between the pixel electrodes. As a result, the operation voltage is lower and transmittance is higher than those of fringe field switching and in-plane switching modes, while preserving a wide viewing angle. Such a high performance device is particularly attractive for large panel liquid crystal displays

    The effects of particle-induced oxidative damage from exposure to airborne fine particulate matter components in the vicinity of landfill sites on Hong Kong

    Get PDF
    The physical, chemical and bioreactivity characteristics of fine particulate matter (PM2.5) collected near (<1 km) two landfill sites and downwind urban sites were investigated. The PM2.5 concentrations were significantly higher in winter than summer. Diurnal variations of PM2.5 were recorded at both landfill sites. Soot aggregate particles were identified near the landfill sites, which indicated that combustion pollution due to landfill activities was a significant source. High correlation coefficients (r) implied several inorganic elements and water-soluble inorganic ions (vanadium (V), copper (Cu), chloride (Cl−), nitrate (NO3−), sodium (Na) and potassium (K)) were positively associated with wind flow from the landfill sites. Nevertheless, no significant correlations were also identified between these components against DNA damage. Significant associations were observed between DNA damage and some heavy metals such as cadmium (Cd) and lead (Pb), and total Polycyclic Aromatic Hydrocarbons (PAHs) during the summer. The insignificant associations of DNA damage under increased wind frequency from landfills suggested that the PM2.5 loading from sources such as regional sources was possibly an important contributing factor for DNA damage. This outcome warrants the further development of effective and source-specific landfill management regulations for particulate matter production control to the city

    Long-term Results of Primary Total Knee Arthroplasty with and without Patellar Resurfacing

    Get PDF
    Among patients that underwent total knee arthroplasty from June, 1990 to January, 1999, 61 cases (44 patients) that could be followed for more than 10 years were included in this study. The patients were divided into a patellar retention group and a patellar resurfacing group, and were compared with regard to their clinical and radiological outcomes. In patients undergoing primary TKA, a selective patellar resurfacing protocol was used. The indications for patellar retention were a small patella, nearly normal articular cartilage, minimal preoperative patellofemoral pain, poor patellar bone quality, and young patient age. When patellar retention was performed, osteophytes of the patella were removed and marginal electrocauterization was carried out. There were 25 cases (20 patients) in the patellar retention group and 36 cases (29 patients) in the patellar resurfacing group. The mean follow-up period was 140.7 months in the patellar retention group and 149.0 months in the patellar resurfacing group. The selective patellar resurfacing with total knee arthroplasty had a favorable outcome;there were a significant difference noted between the 2 groups in the functional scores, which showed better outcomes in the patellar resurfacing group than in the patellar retention group
    corecore