52,069 research outputs found

    Chromospheric evaporation in sympathetic coronal bright points

    Full text link
    {Chromospheric evaporation is a key process in solar flares that has extensively been investigated using the spectroscopic observations. However, direct soft X-ray (SXR) imaging of the process is rare, especially in remote brightenings associated with the primary flares that have recently attracted dramatic attention.} {We intend to find the evidence for chromospheric evaporation and figure out the cause of the process in sympathetic coronal bright points (CBPs), i.e., remote brightenings induced by the primary CBP.} {We utilise the high-cadence and high-resolution SXR observations of CBPs from the X-ray Telescope (XRT) aboard the Hinode spacecraft on 2009 August 23.} {We discover thermal conduction front propagating from the primary CBP, i.e., BP1, to one of the sympathetic CBPs, i.e., BP2 that is 60\arcsec away from BP1. The apparent velocity of the thermal conduction is \sim138 km s1^{-1}. Afterwards, hot plasma flowed upwards into the loop connecting BP1 and BP2 at a speed of \sim76 km s1^{-1}, a clear signature of chromospheric evaporation. Similar upflow was also observed in the loop connecting BP1 and the other sympathetic CBP, i.e., BP3 that is 80\arcsec away from BP1, though less significant than BP2. The apparent velocity of the upflow is \sim47 km s1^{-1}. The thermal conduction front propagating from BP1 to BP3 was not well identified except for the jet-like motion also originating from BP1.} {We propose that the gentle chromospheric evaporation in the sympathetic CBPs were caused by thermal conduction originating from the primary CBP.}Comment: 9 pages, 5 figure

    Blobs in recurring EUV jets

    Full text link
    In this paper, we report our discovery of blobs in the recurrent and homologous jets that occurred at the western edge of NOAA active region 11259 on 2011 July 22. The jets were observed in the seven extreme-ultraviolet (EUV) filters of the Atmospheric Imaging Assembly (AIA) instrument aboard the Solar Dynamics Observatory (SDO). Using the base-difference images of the six filters (94, 131, 171, 211, 193, and 335 {\AA}), we carried out the differential emission measure (DEM) analyses to explore the thermodynamic evolutions of the jets. The jets were accompanied by cool surges observed in the Hα\alpha line center of the ground-based telescope in the Big Bear Solar Observatory. The jets that had lifetimes of 20-30 min recurred at the same place for three times with interval of 40-45 min. Interestingly, each of the jets intermittently experienced several upward eruptions at the speed of 120-450 km s1^{-1}. After reaching the maximum heights, they returned back to the solar surface, showing near-parabolic trajectories. The falling phases were more evident in the low-TT filters than in the high-TT filters, indicating that the jets experienced cooling after the onset of eruptions. We identified bright and compact blobs in the jets during their rising phases. The simultaneous presences of blobs in all the EUV filters were consistent with the broad ranges of the DEM profiles of the blobs (5.5logT7.55.5\le \log T\le7.5), indicating their multi-thermal nature. The median temperatures of the blobs were \sim2.3 MK. The blobs that were \sim3 Mm in diameter had lifetimes of 24-60 s. To our knowledge, this is the first report of blobs in coronal jets. We propose that these blobs are plasmoids created by the magnetic reconnection as a result of tearing-mode instability and ejected out along the jets.Comment: 22 pages, 10 figure

    Pre-flare coronal dimmings

    Full text link
    In this paper, we focus on the pre-flare coronal dimmings. We report our multiwavelength observations of the GOES X1.6 solar flare and the accompanying halo CME produced by the eruption of a sigmoidal magnetic flux rope (MFR) in NOAA active region (AR) 12158 on 2014 September 10. The eruption was observed by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamic Observatory (SDO). The photospheric line-of-sight magnetograms were observed by the Helioseismic and Magnetic Imager (HMI) aboard SDO. The soft X-ray (SXR) fluxes were recorded by the GOES spacecraft. The halo CME was observed by the white light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) aboard SOHO.} {About 96 minutes before the onset of flare/CME, narrow pre-flare coronal dimmings appeared at the two ends of the twisted MFR. They extended very slowly with their intensities decreasing with time, while their apparent widths (8-9 Mm) nearly kept constant. During the impulsive and decay phases of flare, typical fanlike twin dimmings appeared and expanded with much larger extent and lower intensities than the pre-flare dimmings. The percentage of 171 {\AA} intensity decrease reaches 40\%. The pre-flare dimmings are most striking in 171, 193, and 211 {\AA} with formation temperatures of 0.6-2.5 MK. The northern part of the pre-flare dimmings could also be recognized in 131 and 335 {\AA}.} To our knowledge, this is the first detailed study of pre-flare coronal dimmings, which can be explained by the density depletion as a result of the gradual expansion of the coronal loop system surrounding the MFR during the slow rise of the MFR.Comment: 6 pages, 8 figures, to be accepted for publication by A&

    Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of Nuclear factor (erythroid-derived 2)-like 2

    Get PDF
    Perinatal hypoxic ischaemic encephalopathy (HIE) has a high mortality rate with neuropsychological impairment. This study investigated the neuroprotective effects of argon against neonatal hypoxic-ischaemic brain injury. In vitro cortical neuronal cell cultures derived from rat foetuses were subjected to an oxygen and glucose deprivation (OGD) challenge for 90 minutes and then exposed to 70% argon or nitrogen with 5% carbon dioxide and balanced with oxygen for 2 hours. In vivo, seven-day-old rats were subjected to unilateral common carotid artery ligation followed by hypoxic (8% oxygen balanced with nitrogen) insult for 90 minutes. They were exposed to 70% argon or nitrogen balanced with oxygen for 2 hours. In vitro, argon treatment of cortical neuronal cultures resulted in a significant increase of p-mTOR and Nuclear factor (erythroid-derived 2)-like 2(Nrf2) and protection against OGD challenge. Inhibition of m-TOR through Rapamycin or Nrf2 through siRNA abolished argon-mediated cyto-protection. In vivo, argon exposure significantly enhanced Nrf2 and its down-stream effector NAD(P)H Dehydrogenase, Quinone 1(NQO1) and superoxide dismutase 1(SOD1). Oxidative stress, neuroinflammation and neuronal cell death were significantly decreased and brain infarction was markedly reduced. Blocking PI-3K through wortmannin or ERK1/2 through U0126 attenuated argon-mediated neuroprotection. These data provide a new molecular mechanism for the potential application of Argon as a neuroprotectant in HIE

    Lorentz Symmetry and the Internal Structure of the Nucleon

    Full text link
    To investigate the internal structure of the nucleon, it is useful to introduce quantities that do not transform properly under Lorentz symmetry, such as the four-momentum of the quarks in the nucleon, the amount of the nucleon spin contributed by quark spin, etc. In this paper, we discuss to what extent these quantities do provide Lorentz-invariant descriptions of the nucleon structure.Comment: 6 pages, no figur

    Weakly coupled s=1/2s = 1/2 quantum spin singlets in Ba3_{3}Cr2_{2}O8_{8}

    Full text link
    Using single crystal inelastic neutron scattering with and without application of an external magnetic field and powder neutron diffraction, we have characterized magnetic interactions in Ba3_3Cr2_2O8_8. Even without field, we found that there exist three singlet-to-triplet excitation modes in (h,h,l)(h,h,l) scattering plane. Our complete analysis shows that the three modes are due to spatially anisotropic interdimer interactions that are induced by local distortions of the tetrahedron of oxygens surrounding the Jahn-Teller active Cr5+(3d1)^{5+} (3d^1). The strong intradimer coupling of J0=2.38(2)J_0 = 2.38(2) meV and weak interdimer interactions (Jinter0.52(2)|J_{\rm inter}| \leq 0.52(2) meV) makes Ba3_3Cr2_2O8_8 a good model system for weakly-coupled s=1/2s = 1/2 quantum spin dimers
    corecore