141 research outputs found

    Electric transport properties of single-walled carbon nanotubes functionalized by plasma ion irradiation method

    Get PDF
    科研費報告書収録論文(課題番号:13852016/研究代表者:畠山力三/プラズマイオン照射による新機能性進化ナノチューブ創製法の開発

    KATANA - a charge-sensitive triggering system for the Sπ\piRIT experiment

    Full text link
    KATANA - the Krakow Array for Triggering with Amplitude discrimiNAtion - has been built and used as a trigger and veto detector for the Sπ\piRIT TPC at RIKEN. Its construction allows operating in magnetic field and providing fast response for ionizing particles, giving the approximate forward multiplicity and charge information. Depending on this information, trigger and veto signals are generated. The article presents performance of the detector and details of its construction. A simple phenomenological parametrization of the number of emitted scintillation photons in plastic scintillator is proposed. The effect of the light output deterioration in the plastic scintillator due to the in-beam irradiation is discussed.Comment: 14 pages, 11 figure

    Er3+-Doped Nanoengineered Yttria-Stabilized Zirconia Alumino-Silicate Fiber for Efficient CW and Mode-Locked Laser Operation

    Get PDF
    We report on the development of efficient continuous wave (CW) and mode-locked ring fiber lasers utilizing an Er3+-doped nanoengineered yttria-stabilized zirconia alumino (YSZA)-silicate fiber as the gain element. With the proper design of the material composition, the YSZA fiber host presents superior features to eliminate the Er3+ cluster effects and enhance the radiative emission over commercial silica fibers, thus significantly increasing the fiber laser efficiencies. Through cavity analysis and optimization, we successfully demonstrate a 975-nm pumped single-mode Er3+-doped CW YSZA-silicate fiber laser with a slope efficiency of 43%, which is corresponding to the quantum efficiency of 69%. Because of the special dispersion property of the Er3+-doped YSZA-silicate fiber, we are able to build a stable soliton mode-locked 1565-nm fiber laser with 3.2-nJ pulse energy, 644-fs pulsewidth, and 4.96-kW peak power

    Determination of energy-dependent neutron backgrounds using shadow bars

    Full text link
    Understanding the neutron background is essential for determining the neutron yield from nuclear reactions. In the analysis presented here, the shadow bars are placed in front of neutron detectors to determine the energy dependent neutron background fractions. The measurement of neutron spectra with and without shadow bars is important to determine the neutron background more accurately. The neutron background, along with its sources and systematic uncertainties, are explored with a focus on the impact of background models and their dependence on neutron energy.Comment: 7 pages, 10 figure

    Depth Profiling Photoelectron-Spectroscopic Study of an Organic Spin Valve with a Plasma-Modified Pentacene Spacer

    Get PDF
    [[abstract]]We report an enhanced magnetoresistance (MR) in an organic spin valve with an oxygen plasma-treated pentacene (PC) spacer. The spin valve containing PC without the treatment shows no MR effect, whereas those with moderately plasma-treated PC exhibit MR ratios up to 1.64% at room temperature. X-ray photoelectron spectroscopy with depth profiling is utilized to characterize the interfacial electronic properties of the plasma-treated PC spacer which shows the formation of a derivative oxide layer. The results suggest an alternative approach to improve the interface quality and in turn to enhance the MR performance in organic spin valves.[[incitationindex]]SCI[[booktype]]電子
    corecore