2 research outputs found

    Role of chicken fat waste and hydrogen energy ratio as the potential alternate fuel with nano-additives: Insights into resources and atmospheric remediation process

    No full text
    The main focus of the study was to witness the effects of chicken waste-based biodiesel blends along with constant hydrogen injection in a modified diesel engine. Furthermore, the nanoparticle multiwall carbon nanotubes (MWCNT) effects on the engine efficiency were also examined. A series of tests was conducted in the single cylinder, water cooled engine fuelled with diesel, CB100N, CB10N, CB30N, and CB50N. Throughout the entire run, constant hydrogen injection of 5 LPM has been maintained. The parameters such as brake thermal efficiency, brake specific fuel consumption, heat release rate and the emissions of different pollutants were determined for a variety of engine speeds. ASTM standards were applied to measure the viscosity, density and calorific value. From the reported findings, it was clear that the addition of the chicken waste biodiesel could be a sustainable substitute for the existing fossil fuels. Although the emission of the pollutants was dropped significantly, there was a massive drop in the BTE values. To compensate such shortage of power, the biodiesel was dispersed with MWCNT at the concentration of 80 ppm. Compared to the regular biodiesel, MWCNT inclusion increased the BTE by 14%. Further, the consumption of the fuel was also reduced marginally. Considering the pollutants, the catalytic activity of the MWCNT reduced the emissions of CO, NOx, and HC at various engine speeds. Besides, 10% reduction in NOx had been reported at lower engine speeds and was reduced to 8% at higher speed regimes. Compiling all together, increasing the concentration of the biodiesel blends obviously reduced the performance values and however, there was a great advantage in terms of the emission magnitudes irrespective of the engine operating conditions. © 2022 Elsevier Inc.King Saud University, KS

    Production of hydrogen as value added product from the photovoltaic thermal system operated with graphene nanoparticles: An experimental study

    No full text
    Hydrogen is a growing alternative for fossil fuels that may be used to combat the energy shortfall that exists in a variety of industries, most notably the transportation and power generation industries. In this research work, the utilization of solar energy for the generation of electricity and production of hydrogen are thoroughly covered. A hybrid photovoltaic thermal system (PVT) has been used to generate the hydrogen via electrolysis process. To enhance the thermal efficiency of the PVT, graphene oxide nanofluids have been utilized. Graphene oxide nanofluids dispersed at the mass flow rates, such as 0.8 g/s, 1.0 g/s, and 1.2 g/s using sonication technique. A series of tests conducted between 9.00 A.M. to 4.00 P.M. to determine the parameters such as cell temperature, electrical efficiency, thermal efficiency and hydrogen mass flow rate. The procured results of the PVT carried out with the utilization of air and water as coolants were compared with PVT with nanofluids. From the findings it is evident that the performance of the system was significantly enhanced by the utilization of nanofluids at the optimized concentration compared to conventional water and air. With regard to the nanofluids mass flow rate, concentration of 1.2 g/s reported higher electrical (8.6%) and thermal efficiency (33.3%) compared to water. Added to above, there is a profound increase in the mass flow rate of hydrogen that has been observed at 1.2 g/s.King Saud University, Riyadh, Saudi Arabia; [RSP-2021/228
    corecore