343 research outputs found
Standards relevant to transformers – Part VIII
There is a large number of national and international standards covering various aspects of transformer insulating fluids such as specifications, sampling techniques, testing procedures, maintenance, diagnostics, and so on. The present paper summarises available standards and
technical brochures related to the above aspects of the insulating fluid for an immediate reference to the user
Standards relevant to transformers – Part VI
Due to the wide use of transformers, their specification is very important. Transformer specification is a “common language” between manufacturers, suppliers, vendors, engineers, or any other parties that work with transformers on the technical level. That is the reason why the transformer specifications are well defined by standards
Standards relevant to transformers - Part VII
Testing forms an important phase of transformer manufacturing, ensuring that the product complies with the customer specifications and guaranteed technical particulars. Transformer engineers must have a thorough knowledge of testing procedures as per national standards
Standards relevant to transformers – Part VIII
There is a large number of national and international standards covering various aspects of transformer insulating fluids such as specifications, sampling techniques, testing procedures, maintenance, diagnostics, and so on. The present paper summarises available standards and
technical brochures related to the above aspects of the insulating fluid for an immediate reference to the user
Standards relevant to transformers – Part IX
This part of the column covers a list of standards on the range of accessories used with power transformers and reactors. These standards apply to a wide range of accessories and fittings mounted on power transformers and reactors. They outline the service conditions and mechanical
requirements common to all the accessories, as well as operational requirements specific to each device
Interpolation Properties and SAT-based Model Checking
Craig interpolation is a widespread method in verification, with important
applications such as Predicate Abstraction, CounterExample Guided Abstraction
Refinement and Lazy Abstraction With Interpolants. Most state-of-the-art model
checking techniques based on interpolation require collections of interpolants
to satisfy particular properties, to which we refer as "collectives"; they do
not hold in general for all interpolation systems and have to be established
for each particular system and verification environment. Nevertheless, no
systematic approach exists that correlates the individual interpolation systems
and compares the necessary collectives. This paper proposes a uniform
framework, which encompasses (and generalizes) the most common collectives
exploited in verification. We use it for a systematic study of the collectives
and of the constraints they pose on propositional interpolation systems used in
SAT-based model checking
Glyphosate-Resistant Weed Control and Soybean Injury in Response to Different PPO-Inhibiting Herbicides
In Nebraska, 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) as well as acetolactate synthase (ALS)-inhibitor-resistant weeds occur in many soybean fields where herbicides from these modes-of-action have been frequently used in the past. Currently, the protoporphyrinogen oxidase (PPO)-inhibitors are the only effective herbicides for POST control of both glyphosate- and ALS-inhibitor-resistant weeds in soybean. Greenhouse experiments were conducted in 2014 to evaluate the efficacy of PPO-inhibitors applied POST for the control of three glyphosate-resistant (GR) weeds and potential for soybean injury, when applied at two growth stages. All herbicide treatments controlled 10- and 20-cm tall GR common waterhemp ≥ 95% at 21 DAT. GR giant ragweed and kochia were controlled 86 to 99% when treated at 10-cm height and 78 to 92% at 20-cm height by 21 DAT. Herbicide treatments reduced shoot biomass in the three GR weeds 88 to 100% when treated at 10-cm height and 73 to 100% when treated at 20-cm height, at 21 DAT. Soybean injury and shoot biomass data revealed that acifluorfen and lactofen were more injurious (≥ 17%), whereas fomesafen, and fomesafen plus glyphosate were relatively safer (\u3c 10% injury). Overall, fomesafen and fomesafen plus glyphosate caused least injury to soybean and were more effective in controlling GR common waterhemp, giant ragweed, and kochia compared with acifluorfen and lactofen
Glyphosate-Resistant Weed Control and Soybean Injury in Response to Different PPO-Inhibiting Herbicides
In Nebraska, 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) as well as acetolactate synthase (ALS)-inhibitor-resistant weeds occur in many soybean fields where herbicides from these modes-of-action have been frequently used in the past. Currently, the protoporphyrinogen oxidase (PPO)-inhibitors are the only effective herbicides for POST control of both glyphosate- and ALS-inhibitor-resistant weeds in soybean. Greenhouse experiments were conducted in 2014 to evaluate the efficacy of PPO-inhibitors applied POST for the control of three glyphosate-resistant (GR) weeds and potential for soybean injury, when applied at two growth stages. All herbicide treatments controlled 10- and 20-cm tall GR common waterhemp ≥ 95% at 21 DAT. GR giant ragweed and kochia were controlled 86 to 99% when treated at 10-cm height and 78 to 92% at 20-cm height by 21 DAT. Herbicide treatments reduced shoot biomass in the three GR weeds 88 to 100% when treated at 10-cm height and 73 to 100% when treated at 20-cm height, at 21 DAT. Soybean injury and shoot biomass data revealed that acifluorfen and lactofen were more injurious (≥ 17%), whereas fomesafen, and fomesafen plus glyphosate were relatively safer (\u3c 10% injury). Overall, fomesafen and fomesafen plus glyphosate caused least injury to soybean and were more effective in controlling GR common waterhemp, giant ragweed, and kochia compared with acifluorfen and lactofen
- …