10,921 research outputs found

    Aircraft control via variable cant-angle winglets

    Get PDF
    Copyright @ 2008 American Institute of Aeronautics and AstronauticsThis paper investigates a novel method for the control of "morphing" aircraft. The concept consists of a pair of winglets; with adjustable cant angle, independently actuated and mounted at the tips of a baseline flying wing. The general philosophy behind the concept was that for specific flight conditions such as a coordinated turn, the use of two control devices would be sufficient for adequate control. Computations with a vortex lattice model and subsequent wind-tunnel tests demonstrate the viability of the concept, with individual and/or dual winglet deflection producing multi-axis coupled control moments. Comparisons between the experimental and computational results showed reasonable to good agreement, with the major discrepancies thought to be due to wind-tunnel model aeroelastic effects.This work has been supported by a Marie Curie excellence research grant funded by the European Commission

    Effects of some carbon sources on growth and nitrogen fixation in the cyanobacterium Nostoc linckia

    Get PDF
    Glucose, fructose, sucrose, maltose, and lactose stimulated photoheterotrophic growth of Nostoc linckia (Roth.)Born. as well as its heterocyst frequency, chlorophyll and protein contents, ammoniacal nitrogen uptake and nitrogenase activities. Glucose, fructose and sucrose also supported slow chemoheterotrophic growth. α-ketoglutarate, pyruvate, ribose, succinate, acetate, sorbose and formate were inhibitory

    Is there Evidence for a Hubble bubble? The Nature of Type Ia Supernova Colors and Dust in External Galaxies

    Get PDF
    We examine recent evidence from the luminosity-redshift relation of Type Ia Supernovae (SNe Ia) for the ∼3σ\sim 3 \sigma detection of a ``Hubble bubble'' -- a departure of the local value of the Hubble constant from its globally averaged value \citep{Jha:07}. By comparing the MLCS2k2 fits used in that study to the results from other light-curve fitters applied to the same data, we demonstrate that this is related to the interpretation of SN color excesses (after correction for a light-curve shape-color relation) and the presence of a color gradient across the local sample. If the slope of the linear relation (β\beta) between SN color excess and luminosity is fit empirically, then the bubble disappears. If, on the other hand, the color excess arises purely from Milky Way-like dust, then SN data clearly favors a Hubble bubble. We demonstrate that SN data give β≃2\beta \simeq 2, instead of the β≃4\beta \simeq 4 one would expect from purely Milky-Way-like dust. This suggests that either SN intrinsic colors are more complicated than can be described with a single light-curve shape parameter, or that dust around SN is unusual. Disentangling these possibilities is both a challenge and an opportunity for large-survey SN Ia cosmology.Comment: Further information and data at http://qold.astro.utoronto.ca/conley/bubble/ Accepted for publication in ApJ

    The Discovery of Cepheids and a New Distance to NGC 2841 Using the Hubble Space Telescope

    Get PDF
    We report on the discovery of Cepheids in the spiral galaxy NGC 2841, based on observations made with the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope. NGC 2841 was observed over 12 epochs using the F555W filter, and over 5 epochs using the F814W filter. Photometry was performed using the DAOPHOT/ALLFRAME package. We discovered a total of 29 variables, including 18 high-quality Cepheids with periods ranging from 15 to 40 days. Period-luminosity relations in the V and I bands, based on the high-quality Cepheids, yield an extinction-corrected distance modulus of 30.74 +/- 0.23 mag, which corresponds to a distance of 14.1 +/- 1.5 Mpc. Our distance is based on an assumed LMC distance modulus of 18.50 +/- 0.10 mag (D = 50+/- 2.5 kpc) and a metallicity dependence of the Cepheid P-L relation of gamma (VI) = -0.2 +/- 0.2 mag/dex.Comment: 31 preprint pages including 10 figures. Accepted for publication in ApJ. High-resolution version available from http://cfa-www.harvard.edu/~lmacri/n2841.p

    Evolution of dopant-induced helium nanoplasmas

    Get PDF
    Two-component nanoplasmas generated by strong-field ionization of doped helium nanodroplets are studied in a pump-probe experiment using few-cycle laser pulses in combination with molecular dynamics simulations. High yields of helium ions and a pronounced, droplet size-dependent resonance structure in the pump-probe transients reveal the evolution of the dopant-induced helium nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner ionization by the pump pulse and resonant heating by the probe pulse which controls the final charge states detected via the frustration of electron-ion recombination

    Characterization of doping levels in heteronuclear, gas-phase, van der Waals clusters and their energy absorption from an intense optical field

    Get PDF
    A simple mass spectrometric method has been developed to quantify dopant levels in heteronuclear clusters in the gas phase. The method is demonstrated with reference to quantification of the water content in supersonic beams of water-doped argon clusters. Such doped clusters have assumed much importance in the context of recently-reported doping-induced enhancement in the emission of energetic charged particles and photons upon their interaction with intense laser pulses. We have also measured the energy that a doped cluster absorbs from the optical field; we find that energy absorption increases with increasing level of doping. The oft-used linear model of energy absorption is found to be quantitatively inadequate.Comment: To appear in Chemical Physics Letter

    On attributes of a Rotating Neutron star with a Hyperon core

    Full text link
    We study the effect of rotation on global properties of neutron star with a hyperon core in an effective chiral model with varying nucleon effective mass within a mean field approach. The resulting gross properties of the rotating compact star sequences are then compared and analyzed with other theoretical predictions and observations from neutron stars. The maximum mass of the compact star predicted by the model lies in the range (1.4−2.4) M⊙(1.4-2.4) ~M_{\odot} at Kepler frequency ΩK\Omega_K, which is consistant with recent observation of high mass stars thereby reflecting the sensitivity of the underlying nucleon effective mass in the dense matter EoS. We also discuss the implications of the experimental constraints from the flow data from heavy-ion collisions on the global properties of the rotating neutron stars.Comment: 11 Pages, 10 Figures and 2 Table
    • …
    corecore