3 research outputs found

    A DETECTION AND DATA ACQUISITION SYSTEM FOR PRECISION BETA DECAY SPECTROSCOPY

    Get PDF
    Free neutron and nuclear beta decay spectroscopy serves as a robust laboratory for investigations of the Standard Model of Particle Physics. Observables such as decay product angular correlations and energy spectra overconstrain the Standard Model and serve as a sensitive probe for Beyond the Standard Model physics. Improved measurement of these quantities is necessary to complement the TeV scale physics being conducted at the Large Hadron Collider. The UCNB, 45Ca, and Nab experiments aim to improve upon existing measurements of free neutron decay angular correlations and set new limits in the search for exotic couplings in beta decay. To achieve these experimental goals, a highly-pixelated, thick silicon detector with a 100 nm entrance window has been developed for precision beta spectroscopy and the direct detection of 30 keV beta decay protons. The detector has been characterized for its performance in energy reconstruction and particle arrival time determination. A Monte Carlo simulation of signal formation in the silicon detector and propagation through the electronics chain has been written to develop optimal signal analysis algorithms for minimally biased energy and timing extraction. A tagged-electron timing test has been proposed and investigated as a means to assess the validity of these Monte Carlo efforts. A universal platform for data acquisition (DAQ) has been designed and implemented in National Instrument\u27s PXIe-5171R digitizer/FPGA hardware. The DAQ retains a ring buffer of the most recent 400 ms of data in all 256 channels, so that a waveform trace can be returned from any combination of pixels and resolution for complete energy reconstruction. Low-threshold triggers on individual channels were implemented in FPGA as a generic piecewise-polynomial filter for universal, real-time digital signal processing, which allows for arbitrary filter implementation on a pixel-by-pixel basis. This system is universal in the sense that it has complete flexible, complex, and debuggable triggering at both the pixel and global level without recompiling the firmware. The culmination of this work is a system capable of a 10 keV trigger threshold, 3 keV resolution, and maximum 300 ps arrival time systematic, even in the presence of large amplitude noise components

    Radioactive decay simulations for testing of the timing detectors in the Nab experiment

    Get PDF
    Located at the Spallation Neutron Source in Oak Ridge National Lab, the Nab experiment aims to yield a measurement of the electron-neutrino correlation parameter, a, and the Fierz interference term, b, in neutron beta decay. These parameters are located in the energy and the angular distribution of the particles produced through neutron beta decay. Using silicon detectors, a direct measurement of the phase space distribution of the resultant electron energy and proton momentum can be obtained. The silicon detectors of the Nab experiment will be tested using well-known radioactive isotopes. Simulations of systematic testing use the associated energy levels, decay probabilities, and decay options of radioactive sources such as Ce-139, Ba-133, and Sn-113 to determine the expected results of experimental testing. Presented here is an analysis of the Monte Carlo simulations of the radioactive decay of Ce-139, Ba-133, and Sn-113, and their ability to be useful to the Nab experiment as a whole

    Precision pulse shape simulation for proton detection at the Nab experiment

    Full text link
    The Nab experiment at Oak Ridge National Laboratory, USA, aims to measure the beta-antineutrino angular correlation following neutron β\beta decay to an anticipated precision of approximately 0.1\%. The proton momentum is reconstructed through proton time-of-flight measurements, and potential systematic biases in the timing reconstruction due to detector effects must be controlled at the nanosecond level. We present a thorough and detailed semiconductor and quasiparticle transport simulation effort to provide precise pulse shapes, and report on relevant systematic effects and potential measurement schemes
    corecore