619 research outputs found

    Complex chaos in conditional qubit dynamics and purification protocols

    Full text link
    Selection of an ensemble of equally prepared quantum systems, based on measurements on it, is a basic step in quantum state purification. For an ensemble of single qubits, iterative application of selective dynamics has been shown to lead to complex chaos, which is a novel form of quantum chaos with true sensitivity to the initial conditions. The Julia set of initial valuse with no convergence shows a complicated structre on the complex plane. The shape of the Julia set varies with the parameter of the dynamics. We present here results for the two qubit case demonstrating how a purification process can be destroyed with chaotic oscillations

    Complex chaos in the conditional dynamics of qubits

    Full text link
    We analyze the consequences of iterative measurement-induced nonlinearity on the dynamical behavior of qubits. We present a one-qubit scheme where the equation governing the time evolution is a complex-valued nonlinear map with one complex parameter. In contrast to the usual notion of quantum chaos, exponential sensitivity to the initial state occurs here. We calculate analytically the Lyapunov exponent based on the overlap of quantum states, and find that it is positive. We present a few illustrative examples of the emerging dynamics.Comment: 4 pages, 3 figure

    Antisymmetric multi-partite quantum states and their applications

    Get PDF
    Entanglement is a powerful resource for processing quantum information. In this context pure, maximally entangled states have received considerable attention. In the case of bipartite qubit-systems the four orthonormal Bell-states are of this type. One of these Bell states, the singlet Bell-state, has the additional property of being antisymmetric with respect to particle exchange. In this contribution we discuss possible generalizations of this antisymmetric Bell-state to cases with more than two particles and with single-particle Hilbert spaces involving more than two dimensions. We review basic properties of these totally antisymmetric states. Among possible applications of this class of states we analyze a new quantum key sharing protocol and methods for comparing quantum states

    Analysis and minimization of bending losses in discrete quantum networks

    Full text link
    We study theoretically the transfer of quantum information along bends in two-dimensional discrete lattices. Our analysis shows that the fidelity of the transfer decreases considerably, as a result of interactions in the neighbourhood of the bend. It is also demonstrated that such losses can be controlled efficiently by the inclusion of a defect. The present results are of relevance to various physical implementations of quantum networks, where geometric imperfections with finite spatial extent may arise as a result of bending, residual stress, etc

    Quantum walk with a four-dimensional coin

    Get PDF
    We examine the physical implementation of a discrete time quantum walk with a four-dimensional coin. Our quantum walker is a photon moving repeatedly through a time delay loop, with time being our position space. The quantum coin is implemented using the internal states of the photon: the polarization and two of the orbital angular momentum states. We demonstrate how to implement this physically and what components would be needed. We then illustrate some of the results that could be obtained by performing the experiment

    Directional correlations in quantum walks with two particles

    Get PDF
    Quantum walks on a line with a single particle possess a classical analogue. Involving more walkers opens up the possibility of studying collective quantum effects, such as many-particle correlations. In this context, entangled initial states and the indistinguishability of the particles play a role. We consider the directional correlations between two particles performing a quantum walk on a line. For non-interacting particles, we find analytic asymptotic expressions and give the limits of directional correlations. We show that by introducing delta-interaction between the particles, one can exceed the limits for non-interacting particles

    Communication in quantum networks of logical bus topology

    Full text link
    Perfect state transfer (PST) is discussed in the context of passive quantum networks with logical bus topology, where many logical nodes communicate using the same shared media, without any external control. The conditions under which, a number of point-to-point PST links may serve as building blocks for the design of such multi-node networks are investigated. The implications of our results are discussed in the context of various Hamiltonians that act on the entire network, and are capable of providing PST between the logical nodes of a prescribed set in a deterministic manner.Comment: 9 pages, 1 figur
    corecore