80 research outputs found

    Strongly trapped two-dimensional quantum walks

    Get PDF
    Discrete time quantum walks (DTQWs) are nontrivial generalizations of random walks with a broad scope of applications. In particular, they can be used as computational primitives, and they are suitable tools for simulating other quantum systems. DTQWs usually spread ballistically due to their quantumness. In some cases, however, they can remain localized at their initial state (trapping). The trapping and other fundamental properties of DTQWs are determined by the choice of the coin operator. We introduce and analyze an up to now uncharted type of walks driven by a coin class leading to strong trapping, complementing the known list of walks. This class of walks exhibit a number of exciting properties with the possible applications ranging from light pulse trapping in a medium to topological effects and quantum search.Comment: 5 pages, 4 figures, Accepted for publication in Physical Review

    Selective dynamical decoupling for quantum state transfer

    Full text link
    State transfer across discrete quantum networks is one of the elementary tasks of quantum information processing. Its aim is the faithful placement of information into a specific position in the network. However, all physical systems suffer from imperfections, which can severely limit the transfer fidelity. We present selective dynamical decoupling schemes which are capable of stabilizing imperfect quantum state transfer protocols on the model of a bent linear qubit chain. The efficiency of the schemes is tested and verified in numerical simulations on a number of realistic cases. The simulations demonstrate that these selective dynamical decoupling schemes are capable of suppressing unwanted errors in quantum state transfer protocols efficiently.Comment: 20 pages, 9 figure
    • …
    corecore