107 research outputs found

    Gas Bubbles Emerging from a Submerged Granular Bed

    Full text link
    This fluid dynamics video was submitted to the Gallery of Fluid Motion for the 2009 APS Division of Fluid Dynamics Meeting in Minneapolis, Minnesota. In this video we show some results from a simple experiment where air was injected by a single nozzle at known constant flow rates in the bottom of a granular bed submerged in water. The injected air propagates through the granular bed in one of two modes. Mode 1 emergence involves small discrete bubbles taking tortuous paths through the interstitial space of the bed. Multiple small bubbles can be emitted from the bed in an array of locations at the same time during Mode 1 emergence. Mode 2 emergence involves large discrete bubbles locally fluidizing the granular bed and exiting the bed approximately above the injection site. Bead diameter, bead density, and air flow rate were varied to investigate the change in bubble release behavior at the top of the granular bed. This system is a useful model for methane seeps in lakes. Methane bubbles are released from the decomposition of organic matter in the lake bed. The initial size of the bubble determines how much of the gas is absorbed into the lake and how much of the gas reaches the surface and is released into the atmosphere. The size and behavior of the emerging bubbles may also affect the amount of vertical mixing occurring in the lake, as well as the mixing from the lake bed into the benthic layer.Comment: 2009 APS DFD Gallery of Fluid Motion Submissio

    Nonmodal Growth of TravelingWaves on Blunt Cones at Hypersonic Speeds

    Get PDF
    The existing database of transition measurements in hypersonic ground facilities has established that, as the nosetip bluntness is increased, the onset of boundary layer transition over a circular cone at zero angle of attack shifts downstream. However, this trend is reversed at sufficiently large values of the nose Reynolds number, so that the transition onset location eventually moves upstream with a further increase in nose-tip bluntness. Because modal amplification is too weak to initiate transition at moderate-to-large bluntness values, nonmodal growth has been investigated as the potential basis for a physics-based model for the frustum transition. The present analysis investigates the nonmodal growth of traveling disturbances initiated within the nose-tip vicinity that peak within the entropy layer. Results show that, with increasing nose bluntness, both planar and oblique traveling disturbances experience appreciable energy amplification up to successively higher frequencies. For moderately blunt cones, the initial nonmmodal growth is followed by a partial decay that is more than overcome by an eventual, modal growth as Mack-mode waves. For larger bluntness values, the Mack-mode waves are not amplified anywhere upstream of the experimentally measured transition location, but the traveling modes still undergo a significant amount of nonmodal growth. This finding does not provide a definitive link between optimal growth and the onset of transition, but it is qualitatively consistent with the experimental observations that frustum transition in the absence of sufficient Mack-mode amplification implies a double peak in disturbance amplification and the appearance of transitional events above the boundary-layer edge

    Effects of Shock-Tube Cleanliness on Hypersonic Boundary Layer Transition at High Enthalpy

    Get PDF
    The prediction of a high-speed boundary-layer transition (BLT) location is critical to hypersonic vehicle design; this is because the increased skin friction and surface heating rate after transition result in increased weight of the thermal protection system. Experimental studies using hypervelocity wind tunnels are one component of BLT research

    On the impact of injection schemes on transition in hypersonic boundary layers

    Get PDF
    Three geometries are explored for injecting CO_2 into the boundary layer of a sharp five degree half-angle cone. The impact of the injection geometry, namely discrete injection holes or a porous conical section, on tripping the boundary layer is examined, both with and without injected flow. The experiments are conducted at Caltech's T5 reflected shock tunnel. Two different air free-stream conditions are explored. For the discrete-hole injectors, the diameter for the injection holes is 0.75 mm nominally and the length to diameter ratio is about 30. One injector has a single row of holes and the other has four rows. With the 4-row geometry fully turbulent heat transfer values are measured within four centimeters of the last injection row for both free-stream conditions. The 1-row injector results on a reduction of 50% in the transition Reynolds number. The porous injector does not move the transition Reynolds number upstream by itself with no injection flow

    Carbon Dioxide Injection for Hypervelocity Boundary Layer Stability

    Get PDF
    An approach for introducing carbon dioxide as a means or stabilizing a hypervelocity boundary layer over a slender bodied vehicle is investigated through the use of numerical simulations. In the current study, two different test bodies are examined. The first is a five-degree-half-angle cone currently under research at the GALCIT T5 Shock Tunnel with a 4 cm porous wall insert used to transpire gas into the boundary layer. The second test body is a similar cone with a porous wall over a majority of cone surface. Computationally, the transpiration is performed using an axi-symmetric flow simulation with wall-normal blowing. The effect of the injection and the transition location are gauged by solving the parabolized stability equations and using the semi-empirical e^N method. The results show transition due to the injection for the first test body and a delay in the transition location for the second test body as compared to a cone without injection under the same flight conditions. The mechanism for the stabilizing effect of carbon dioxide is also explored through selectively applying non-equilibrium processes to the stability analysis. The results show that vibrational non-equilibrium plays a role in reducing disturbance amplification; however, other factors also contribute

    Turbulent Spot Observations within a Hypervelocity Boundary Layer on a 5-degree Half-Angle Cone

    Get PDF
    Laminar to turbulent transition is a critically important process in hypersonic vehicle design. Higher thermal loads, by half an order of magnitude or more, result from the increased heat transfer due to turbulent flow. Drag, skin friction, and other flow properties are also significantly impacted. Transition to turbulence in initially laminar boundary layers can occur along many paths. In low-speed flow under ideal conditions (quiet freestream, nominally smooth surfaces with favorable or zero pressure gradient and minimal crossflow) transition occurs over a finite distance and is associated with the creation and growth of propagating patches of turbulent flow, known as turbulent spots. Spots may be due to the breakdown of linear instabilities or induced by “bypass mechanisms” associated with nonideal effects in the flow or model. H.W. Emmons (1951) was the first to propose that laminar boundary layers break down through the convergence of spots, after observations of a water-table analogy to air flow. Spot formation has been studied extensively in subsonic flows, a recent review of past and current work on spots in incompressible flows is given by Strand and Goldstein (2011)

    Effects of Shock-Tube Cleanliness on Hypersonic Boundary Layer Transition at High Enthalpy

    Get PDF
    The prediction of a high-speed boundary-layer transition (BLT) location is critical to hypersonic vehicle design; this is because the increased skin friction and surface heating rate after transition result in increased weight of the thermal protection system. Experimental studies using hypervelocity wind tunnels are one component of BLT research

    Nosetip Bluntness Effects on Transition at Hypersonic Speeds: Experimental and Numerical Analysis Under NATO STO AVT-240

    Get PDF
    The existing database of transition measurements in hypersonic ground facilities has established that the onset of boundary layer transition over a circular cone at zero angle of attack shifts downstream as the nosetip bluntness is increased with respect to a sharp cone. However, this trend is reversed at suciently large values of the nosetip Reynolds number, so that the transition onset location eventually moves upstream with a further increase in nosetip bluntness. This transition reversal phenomenon, which cannot be ex- plained on the basis of linear stability theory, was the focus of a collaborative investigation under the NATO STO group AVT-240 on Hypersonic Boundary-Layer Transition Predic- tion. The current paper provides an overview of that e ort, which included wind tunnel measurements in three di erent facilities and theoretical analysis related to modal and nonmodal ampli cation of boundary layer disturbances. Because neither rst and second- mode waves nor entropy-layer instabilities are found to be substantially ampli ed to ini- tiate transition at large bluntness values, transient (i.e., nonmodal) disturbance growth has been investigated as the potential basis for a physics-based model for the transition reversal phenomenon. Results of the transient growth analysis indicate that disturbances that are initiated within the nosetip or in the vicinity of the juncture between the nosetip and the frustum can undergo relatively signi cant nonmodal ampli cation and that the maximum energy gain increases nonlinearly with the nose radius of the cone. This nding does not provide a de nitive link between transient growth and the onset of transition, but it is qualitatively consistent with the experimental observations that frustum transition during the reversal regime was highly sensitive to wall roughness, and furthermore, was dominated by disturbances that originated near the nosetip

    Nosetip Bluntness Effects on Transition at Hypersonic Speeds: Experimental and Numerical Analysis

    Get PDF
    The existing database of transition measurements in hypersonic ground facilities has established that the onset of boundary layer transition over a circular cone at zero angle of attack shifts downstream as the nosetip bluntness is increased with respect to a sharp cone. However, this trend is reversed at sufficiently large values of the nosetip Reynolds number, so that the transition onset location eventually moves upstream with a further increase in nosetip bluntness. This transition reversal phenomenon, which cannot be explained on the basis of linear stability theory, was the focus of a collaborative investigation under the NATO STO group AVT-240 on Hypersonic Boundary-Layer Transition Prediction. The current paper provides an overview of that effort, which included wind tunnel measurements in three different facilities and theoretical analysis related to modal and nonmodal amplification of boundary layer disturbances. Because neither first and second-mode waves nor entropy-layer instabilities are found to be substantially amplified to initiate transition at large bluntness values, transient (i.e., nonmodal) disturbance growth has been investigated as the potential basis for a physics based model for the transition reversal phenomenon. Results of the transient growth analysis indicate that stationary disturbances that are initiated within the nosetip or in the vicinity of the juncture between the nosetip and the frustum can undergo relatively significant nonmodal amplification and that the maximum energy gain increases nonlinearly with the nose radius of the cone. This finding does not provide a definitive link between transient growth and the onset of transition, but it is qualitatively consistent with the experimental observations that frustum transition during the reversal regime was highly sensitive to wall roughness, and furthermore, was dominated by disturbances that originated near the nosetip. Furthermore, the present analysis shows significant nonmodal growth of traveling disturbances that peak within the entropy layer and could also play a role in the transition reversal phenomenon

    Carbon Dioxide Injection for Hypervelocity Boundary Layer Stability

    Get PDF
    An approach for introducing carbon dioxide as a means or stabilizing a hypervelocity boundary layer over a slender bodied vehicle is investigated through the use of numerical simulations. In the current study, two different test bodies are examined. The first is a five-degree-half-angle cone currently under research at the GALCIT T5 Shock Tunnel with a 4 cm porous wall insert used to transpire gas into the boundary layer. The second test body is a similar cone with a porous wall over a majority of cone surface. Computationally, the transpiration is performed using an axi-symmetric flow simulation with wall-normal blowing. The effect of the injection and the transition location are gauged by solving the parabolized stability equations and using the semi-empirical e^N method. The results show transition due to the injection for the first test body and a delay in the transition location for the second test body as compared to a cone without injection under the same flight conditions. The mechanism for the stabilizing effect of carbon dioxide is also explored through selectively applying non-equilibrium processes to the stability analysis. The results show that vibrational non-equilibrium plays a role in reducing disturbance amplification; however, other factors also contribute
    corecore