277 research outputs found

    How will disenfranchised Peoples adapt to Climate Change? Strengthening the Ecojustice Movement

    Get PDF
    The Fourth assessment of the Intergovernmental Panel on Climate Change (IPCC) acknowledged That millions of people are currently, and will increasingly be, affected by the impacts of climate change, in the form of floods, droughts and other extreme events, as well as related threats to food security. In response to these global environmental changes, the international community, including civil society, is acting on the need for immediate adaptation measures and is developing strategies for future adaptation. However, the impacts of climate change are unevenly distributed, with many of the poorest, most vulnerable peoples experiencing the immediate effects of climate change, in the here and now. As the IPCC noted, developing countries are disproportionately affected by climate change and often, the least able to adapt due to lack of infrastructure and resources

    Elemental analysis of aging human pituitary glands implicates mercury as a contributor to the somatopause

    Full text link
    Copyright © 2019 Pamphlett, Kum Jew, Doble and Bishop. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Background: Growth hormone levels often decline on aging, and this “somatopause” is associated with muscle and bone loss, visceral adiposity and impaired cardiovascular function. Mercury has been detected in human pituitary glands, so to see if mercury could play a part in the somatopause we measured the proportion of people at different ages who had mercury in their anterior pituitary cells. Materials and methods: Paraffin sections of pituitary glands taken at autopsy from 94 people between the ages of 2 and 99 years were stained for inorganic mercury using autometallography. Pituitary mercury content was classified as none, low (30% of cells) in increasing two-decade age groups. Autometallography combined with immunohistochemistry determined which hormone-producing cells contained mercury. Laser ablation-inductively coupled plasma-mass spectrometry was used to confirm the presence of mercury. Results: The proportion of people with low-content pituitary mercury remained between 33 and 42% at all ages. The proportion of people with high-content mercury increased with increasing age, from 0% of people in the 2-20 year group to a peak of 50% of people in the 61-80 years group, followed by a fall to 35% of people in the 81-99 years group. Mercury, when present, was found always in somatotrophs, occasionally in corticotrophs, rarely in thyrotrophs and gonadotrophs, and never in lactotrophs. Laser ablation-inductively coupled plasma-mass spectrometry detected mercury in regions of pituitaries that stained with autometallography. Conclusions: The proportion of people with mercury in their anterior pituitary cells, mostly somatotrophs, increases with aging, suggesting that mercury toxicity could be one factor contributing to the decline in growth hormone levels found in advancing age

    Hierarchical Bayesian CMB Component Separation with the No-U-Turn Sampler

    Get PDF
    Key to any cosmic microwave background (CMB) analysis is the separation of the CMB from foreground contaminants. In this paper we present a novel implementation of Bayesian CMB component separation. We sample from the full posterior distribution using the No-U-Turn Sampler (NUTS), a gradient based sampling algorithm. Alongside this, we introduce new foreground modelling approaches. We use the mean-shift algorithm to define regions on the sky, clustering according to naively estimated foreground spectral parameters. Over these regions we adopt a complete pooling model, where we assume constant spectral parameters, and a hierarchical model, where we model individual spectral parameters as being drawn from underlying hyper-distributions. We validate the algorithm against simulations of the LiteBIRD and C-BASS experiments, with an input tensor-to-scalar ratio of r=5×103r=5\times 10^{-3}. Considering multipoles 3212132\leq\ell\leq 121, we are able to recover estimates for rr. With LiteBIRD only observations, and using the complete pooling model, we recover r=(10±0.6)×103r=(10\pm 0.6)\times 10^{-3}. For C-BASS and LiteBIRD observations we find r=(7.0±0.6)×103r=(7.0\pm 0.6)\times 10^{-3} using the complete pooling model, and r=(5.0±0.4)×103r=(5.0\pm 0.4)\times 10^{-3} using the hierarchical model. By adopting the hierarchical model we are able to eliminate biases in our cosmological parameter estimation, and obtain lower uncertainties due to the smaller Galactic emission mask that can be adopted for power spectrum estimation. Measured by the rate of effective sample generation, NUTS offers performance improvements of 103\sim10^3 over using Metropolis-Hastings to fit the complete pooling model. The efficiency of NUTS allows us to fit the more sophisticated hierarchical foreground model, that would likely be intractable with non-gradient based sampling algorithms.Comment: 19 pages, 9 figure

    Age-related accumulation of toxic metals in the human locus ceruleus

    Full text link
    © 2018 Pamphlett et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Damage to the locus ceruleus has been implicated in the pathogenesis of a number of neurological conditions. Locus ceruleus neurons accumulate toxic metals such as mercury selectively, however, the presence of toxic metals in locus ceruleus neurons of people of different ages, and with a variety of disorders, is not known. To demonstrate at what age toxic metals are first detectable in the locus ceruleus, and to evaluate whether their presence is more common in certain clinicopathological conditions, we looked for these metals in 228 locus ceruleus samples. Samples were taken at coronial autopsies from individuals with a wide range of ages, pre-existing conditions and causes of death. Paraffin sections of pons containing the locus ceruleus were stained with silver nitrate autometallography, which indicates inorganic mercury, silver and bismuth within cells (termed autometallography-detected toxic metals, or AMG™). No locus ceruleus AMG neurons were seen in 38 individuals aged under 20 years. 47% of the 190 adults (ie, aged 20 years and over) had AMG locus ceruleus neurons. The proportion of adults with locus ceruleus AMG neurons increased during aging, except for a decreased proportion in the 90-plus years age group. No differences were found in the proportions of locus ceruleus AMG neurons between groups with different neurological, psychiatric, or other clinicopathological conditions, or among various causes of death. Elemental analysis with laser ablation-inductively coupled plasma-mass spectrometry was used to cross-validate the metals detected by AMG, by looking for silver, gold, bismuth, cadmium, chromium, iron, mercury, nickel, and lead in the locus ceruleus of ten individuals. This confirmed the presence of mercury in locus ceruleus samples containing AMG neurons, and showed cadmium, silver, lead, iron, and nickel in the locus ceruleus of some individuals. In conclusion, toxic metals stained by AMG (most likely inorganic mercury) appear in locus ceruleus neurons in early adult life. About half of adults in this study had locus ceruleus neurons containing inorganic mercury, and elemental analysis found a range of other toxic metals in the locus ceruleus. Locus ceruleus inorganic mercury increased during aging, except for a decrease in advanced age, but was not found more often in any single clinicopathological condition or cause of death

    Elemental imaging shows mercury in cells of the human lateral and medial geniculate nuclei.

    Full text link
    OBJECTIVE:Interference with the transmission of sensory signals along visual and auditory pathways has been implicated in the pathogenesis of hallucinations. The relay centres for vision (the lateral geniculate nucleus) and hearing (the medial geniculate nucleus) appear to be susceptible to the uptake of circulating mercury. We therefore investigated the distribution of mercury in cells of both these geniculate nuclei. MATERIALS AND METHODS:Paraffin-embedded tissue sections containing the lateral geniculate nucleus were obtained from 50 adults (age range 20-104 years) who at autopsy had a variety of clinicopathological conditions, including neurological and psychiatric disorders. The medial geniculate nucleus was present in seven sections. Sections were stained for mercury using autometallography. Laser ablation-inductively coupled plasma-mass spectrometry was used to confirm the presence of mercury. RESULTS:Ten people had mercury in cells of the lateral geniculate nucleus, and in the medial geniculate nucleus of three of these. Medical diagnoses in these individuals were: none (3), Parkinson disease (3), and one each of depression, bipolar disorder, multiple sclerosis, and mercury self-injection. Mercury was distributed in different groups of geniculate capillary endothelial cells, neurons, oligodendrocytes, and astrocytes. Mass spectrometry confirmed the presence of mercury. CONCLUSION:Mercury is present in different combinations of cell types in the lateral and medial geniculate nuclei in a proportion of people from varied backgrounds. This raises the possibility that mercury-induced impairment of the function of the geniculate nuclei could play a part in the genesis of visual and auditory hallucinations. Although these findings do not provide a direct link between mercury in geniculate cells and hallucinations, they suggest that further investigations into the possibility of toxicant-induced hallucinations are warranted

    Mercury in the human adrenal medulla could contribute to increased plasma noradrenaline in aging

    Full text link
    Plasma noradrenaline levels increase with aging, and this could contribute to the sympathetic overactivity that is associated with essential hypertension and the metabolic syndrome. The underlying cause of this rise in noradrenaline is unknown, but a clue may be that mercury increases noradrenaline output from the adrenal medulla of experimental animals. We therefore determined the proportion of people from 2 to 104 years of age who had mercury in their adrenal medulla. Mercury was detected in paraffin sections of autopsied adrenal glands using two methods of elemental bioimaging, autometallography and laser ablation-inductively coupled plasma-mass spectrometry. Mercury first appeared in cells of the adrenal medulla in the 21–40 years group, where it was present in 52% of samples, and increased progressively in frequency in older age groups, until it was detected in 90% of samples from people aged over 80 years. In conclusion, the proportion of people having mercury in their adrenal medulla increases with aging. Mercury could alter the metabolism of catecholamines in the adrenal medulla that leads to the raised levels of plasma noradrenaline in aging. This retrospective autopsy study was not able to provide a definitive link between adrenal mercury, noradrenaline levels and hypertension, but future functional human and experimental studies could provide further evidence for these associations

    The distribution of toxic metals in the human retina and optic nerve head: Implications for age-related macular degeneration.

    Full text link
    OBJECTIVE:Toxic metals are suspected to play a role in the pathogenesis of age-related macular degeneration. However, difficulties in detecting the presence of multiple toxic metals within the intact human retina, and in separating primary metal toxicity from the secondary uptake of metals in damaged tissue, have hindered progress in this field. We therefore looked for the presence of several toxic metals in the posterior segment of normal adult eyes using elemental bioimaging. METHODS:Paraffin sections of the posterior segment of the eye from seven tissue donors (age range 54-74 years) to an eye bank were examined for toxic metals in situ using laser ablation-inductively coupled plasma-mass spectrometry, a technique that detects multiple elements in tissues, as well as the histochemical technique of autometallography that demonstrates inorganic mercury, silver, and bismuth. No donor had a visual impairment, and no significant retinal abnormalities were seen on post mortem fundoscopy and histology. RESULTS:Metals found by laser ablation-inductively coupled plasma-mass spectrometry in the retinal pigment epithelium and choriocapillaris were lead (n = 7), nickel (n = 7), iron (n = 7), cadmium (n = 6), mercury (n = 6), bismuth (n = 5), aluminium (n = 3), and silver (n = 1). In the neural retina, mercury was present in six samples, and iron in one. Metals detected in the optic nerve head were iron (N = 7), mercury (N = 7), nickel (N = 4), and aluminium (N = 1). No gold or chromium was seen. Autometallography demonstrated probable inorganic mercury in the retinal pigment epithelium of one donor. CONCLUSION:Several toxic metals are taken up by the human retina and optic nerve head. Injury to the retinal pigment epithelium from toxic metals could damage the neuroprotective functions of the retinal pigment epithelium and allow toxic metals to enter the outer neural retina. These findings support the hypothesis that accumulations of toxic metals in the retina could contribute to the pathogenesis of age-related macular degeneration

    The C-Band All-Sky Survey (C-BASS): Constraining diffuse Galactic radio emission in the North Celestial Pole region

    Get PDF
    The C-Band All-Sky Survey C-BASS is a high-sensitivity all-sky radio survey at an angular resolution of 45 arcmin and a frequency of 4.7 GHz. We present a total intensity 4.7 GHz map of the North Celestial Pole (NCP) region of sky, above declination +80 deg, which is limited by source confusion at a level of ~0.6 mK rms. We apply the template-fitting (cross-correlation) technique to WMAP and Planck data, using the C-BASS map as the synchrotron template, to investigate the contribution of diffuse foreground emission at frequencies ~20-40 GHz. We quantify the anomalous microwave emission (AME) that is correlated with far-infrared dust emission. The AME amplitude does not change significantly (<10%) when using the higher frequency C-BASS 4.7 GHz template instead of the traditional Haslam 408 MHz map as a tracer of synchrotron radiation. We measure template coefficients of 9.93±0.359.93\pm0.35 and 9.52±0.349.52\pm0.34 K per unit τ353\tau_{353} when using the Haslam and C-BASS synchrotron templates, respectively. The AME contributes 55±2μ55\pm2\,\muK rms at 22.8 GHz and accounts for ~60% of the total foreground emission. Our results suggest that a harder (flatter spectrum) component of synchrotron emission is not dominant at frequencies >5 GHz; the best-fitting synchrotron temperature spectral index is β=2.91±0.04\beta=-2.91\pm0.04 from 4.7 to 22.8 GHz and β=2.85±0.14\beta=-2.85\pm0.14 from 22.8 to 44.1 GHz. Free-free emission is weak, contributing ~7μ7\,\muK rms (~7%) at 22.8 GHz. The best explanation for the AME is still electric dipole emission from small spinning dust grains.Comment: 18 pages, 6 figures, version matches version accepted by MNRA

    Element release and reaction-induced porosity alteration during shale-hydraulic fracturing fluid interactions

    Get PDF
    The use of hydraulic fracturing techniques to extract oil and gas from low permeability shale reservoirs has increased significantly in recent years. During hydraulic fracturing, large volumes of water, often acidic and oxic, are injected into shale formations. This drives fluid-rock interaction that can release metal contaminants (e.g., U, Pb) and alter the permeability of the rock, impacting the transport and recovery of water, hydrocarbons, and contaminants. To identify the key geochemical processes that occur upon exposure of shales to hydraulic fracturing fluid, we investigated the chemical interaction of hydraulic fracturing fluids with a variety of shales of different mineralogical texture and composition. Batch reactor experiments revealed that the dissolution of both pyrite and carbonate minerals occurred rapidly, releasing metal contaminants and generating porosity. Oxidation of pyrite and aqueous Fe drove precipitation of Fe(III)-(oxy)hydroxides that attenuated the release of these contaminants via co-precipitation and/or adsorption. The precipitation of these (oxy)hydroxides appeared to limit the extent of pyrite reaction. Enhanced removal of metals and contaminants in reactors with higher fluid pH was inferred to reflect increased Fe-(oxy)hydroxide precipitation associated with more rapid aqueous Fe(II) oxidation. The precipitation of both Al- and Fe-bearing phases revealed the potential for the occlusion of pores and fracture apertures, whereas the selective dissolution of calcite generated porosity. These pore-scale alterations of shale texture and the cycling of contaminants indicate that chemical interactions between shales and hydraulic fracturing fluids may exert an important control on the efficiency of hydraulic fracturing operations and the quality of water recovered at the surface
    corecore