6 research outputs found

    Enterovirus D68 circulation between 2014 and 2022 in Slovenian children

    Get PDF
    IntroductionEnterovirus D68 (EV-D68) belongs to the Picornaviridae family, genus Enterovirus. It is mostly known as a respiratory virus causing upper and lower respiratory tract infections, but it is also rarely associated with a variety of central nervous system complications, with acute flaccid myelitis being reported most frequently. This study assesses the incidence, seasonality, clinical presentation, and molecular epidemiology of the EV-D68 strain in EV-positive children hospitalized between 2014 and 2022 at the largest pediatric medical center in Slovenia.MethodsEV-D68 was detected using specific qRT-PCR, whereas partial VP1 sequences were obtained with Sanger sequencing, and further analyzed using the software CLC Main Workbench version 7 and MEGA version X.ResultsEV-D68 was detected in 154 out of 1,145 (13.4%) EV-positive children. In the two epidemic years, 2014 and 2016, EV-D68 was most frequently detected in the summer and early autumn, peaking in September. The median age of EV-D68–infected children was 3 years (IQR 1–3 years), with a female: male ratio of 1:1.17. Rhinorrhea was present in 74.0% of children, respiratory distress in 82.5%, and hypoxemia requiring supplemental oxygen in 44.1%. Out of 154 patients, 80.0% were hospitalized, with a median stay of 2 days (IQR 1–3 days). Lower respiratory tract infection was observed in 89.0% of EV-D68–positive patients, with bronchitis and bronchiolitis being most frequently diagnosed. No central nervous system manifestations of EV-D68 infection were observed in the study cohort. Phylogenetic analysis of partial VP1 sequences of EV-D68 revealed close similarity to the EV-D68 variants that were circulating in other European countries in these years.DiscussionSlovenia faced two EV-D68 epidemics in 2014 and 2016; however, after 2016 only nine more cases were detected until the end of the study period. Based on the results of this study, EV-D68 was a frequent cause of lower respiratory tract infection among EV-positive patients. However, none of the patients we studied needed ICU treatment, and none developed acute flaccid paralysis. Our results indicate that EV-D68 is not present constantly, so additional monitoring studies should be conducted in the future to better understand the implications of this EV type in human disease

    Changes in HRSV Epidemiology but Not Circulating Variants in Hospitalized Children due to the Emergence of SARS-CoV-2

    No full text
    This study assesses the circulation of human respiratory syncytial virus (HRSV) genotypes before, during, and toward the end of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in children and determines the influence of the pandemic on HRSV circulation patterns and evolution. Phylogenetic analysis of the hypervariable glycoprotein G gene was performed on 221/261 (84.7%) HRSV-positive samples and shows two separated clusters, one belonging to HRSV-A (129/221) and another to HRSV-B (92/221). All Slovenian HRSV-A strains contained the 72-nucleotide-long duplicated region in the attachment glycoprotein G gene and were classified as lineage GA2.3.5. All Slovenian HRSV-B strains similarly contained a 60-nucleotide-long duplicated region in the attachment glycoprotein G gene and were classified as lineage GB5.0.5a. During the 3-year period (2018–2021) covered by the study, no significant differences were observed within strains detected before the SARS-CoV-2 pandemic, during it, and after the implementation of nonpharmaceutical preventive measures. Slovenian HRSV-A strains seem to be more diverse than HRSV-B strains. Therefore, further whole-genome investigations would be required for better monitoring of the long-term impact of SARS-CoV-2 endemic circulation and the formation of new HRSV lineages and epidemiological patterns

    A simplified nasopharyngeal swab collection procedure for minimizing patient discomfort while retaining sample quality

    Full text link
    A nasopharyngeal swab (NPS) is the most frequently collected sample type when molecular diagnosis of respiratory viruses, including SARS CoV-2, is required. An optimal collection technique would provide sufficient sample quality for the diagnostic process and would minimize the discomfort felt by the patient. This study compares a simplified NPS collection procedure with only one rotation of the swab to a more standard procedure with five rotations. Swabs were collected from 76 healthy volunteers by the same healthcare professional on 2 consecutive days at a similar hour to minimize variability. The number of Ubiquitin C copy number per sample was measured by real-time quantitative PCR and patient discomfort was assessed by questionnaire. No statistically significant difference (p = 0.15) was observed in the Ubiquitin C copy number per sample between a NPS collected with one rotation (5.2 ± 0.6 log UBC number copies/sample) or five rotations (5.3 ± 0.5 log UBC number copies/sample). However, a statistically significant difference was observed in discomfort between these two procedures, the second being much more uncomfortable. Additional analysis of the results showed a weak correlation between discomfort and the number of human cells recovered (Spearman\u27s rho = 0.202) and greater discomfort in younger people. The results of this study show that a NPS collected with one slow rotation has the same quality as a NPS collected with five rotations. However, the collection time is shorter and, most importantly, less unpleasant for patients

    Detection of herpes simplex and varicella-zoster virus from skin lesions

    Full text link
    We compared 2 molecular tests for detection of herpes simplex viruses 1 and 2 (HSV-1, HSV-2) and varicella-zoster virus (VZV): real-time polymerase chain reaction (RT-PCR) (Argene, BioMerieux, France) performed on an LC480 platform (Roche Applied Science, Mannheim, Germany) and isothermal amplification using a Solana HSV1 + 2/VZV assay (Quidel Corporation Worldwide Headquarters, San Diego, CA) with helicase-dependent amplification performed by a Solana® instrument. With both methods, HSV-1 was detected in 68/291 (23.4%), HSV-2 in 23/291 (7.9%), and VZV in 48/291 (16.5%) skin lesions. Both methods agreed completely only in detection of HSV-2 (kappa = 1). Concordance between Solana HSV1 + 2/VZV and RT-PCR was 98.3% (kappa = 0.95) for HSV-1 and 99.3% (kappa = 0.98) for VZV. Rapid detection of HSV-1, HSV-2, and VZV using the Solana platform is a useful method for routine diagnostics and for urgent swab samples requiring a short turnaround time

    Evaluation of Two Broadly Used Commercial Methods for Detection of Respiratory Viruses with a Recently Added New Target for Detection of SARS-CoV-2

    No full text
    The clinical symptoms caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are nonspecific and can be associated with most other respiratory viruses that cause acute respiratory tract infections (ARI). Because the clinical differentiation of COVID-19 patients from those with other respiratory viruses is difficult, the evaluation of automated methods to detect important respiratory viruses together with SARS-CoV-2 seems necessary. Therefore, this study compares two molecular assays for the detection of respiratory viruses, including SARS-CoV-2: the Respiratory Viruses 16-Well Assay (AusDiagnostics, Pty Ltd., Mascot, Australia) and the Allplex™ RV Essential Assay coupled with the Allplex™-nCoV Assay (Seegene Inc., Seoul, Korea). The two methods (AusDiagnostics and AlplexTM-nCoV Assay SARS-CoV-2) had 98.6% agreement with the reference method, cobas 6800, for the detection of SARS-CoV-2. Agreement between the AusDiagnostics assay and the AlplexTM RV Essential Assay for the detection of seven respiratory viruses was 99%. In our experience, the Respiratory Viruses 16-Well Assay proved to be the most valuable and useful medium-throughput method for simultaneous detection of important respiratory viruses and SARS-CoV-2. The main advantages of the method are high specificity for all targets included and their simultaneous detection and medium throughput with the option of having multiple instruments provide a constant run

    Performance of nasopharyngeal swab and saliva in detecting Delta and Omicron SARS-CoV-2 variants

    Full text link
    A prospective cohort study was conducted during the Delta and Omicron severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) epidemic waves from paired nasopharyngeal swab (NPS or NP swab) and saliva samples taken from 624 participants. The study aimed to assess if any differences among participants from both waves could be observed and if any difference in molecular diagnostic performance could be observed among the two sample types. Samples were transported immediately to the laboratory to ensure the highest possible sample quality without any freezing and thawing steps before processing. Nucleic acids from saliva and NPS were prospectively extracted and SARS-CoV-2 was detected using a real-time reverse-transcription polymerase chain reaction. All observed results were statistically analyzed. Although the results obtained with NP and saliva agreed overall, higher viral loads were observed in NP swabs regardless of the day of specimen collection in both SARS-CoV-2 epidemic waves. No significant difference could be observed between the two epidemic waves characterized by Delta or Omicron SARS-CoV-2. To note, Delta infection resulted in higher viral loads both in NP and saliva and more symptoms, including rhinorrhea, cough, and dyspnea, whereas Omicron wave patients more frequently reported sore throat. An increase in the mean log RNA of SARS-CoV-2 was observed with the number of expressed symptoms in both waves, however, the difference was not significant. Data confirmed that results from saliva were concordant with those from NP swabs, although saliva proved to be a challenging sample with frequent inhibitions that required substantial retesting
    corecore