11 research outputs found

    D6.3 Intermediate system evaluation results

    Full text link
    The overall purpose of METIS is to develop a 5G system concept that fulfil s the requirements of the beyond-2020 connected information society and to extend today’s wireless communication systems for new usage cases. First, in this deliverable an updated view on the overall METIS 5G system concept is presented. Thereafter, simulation results for the most promising technology components supporting the METIS 5G system concept are reported. Finally, s imulation results are presented for one relevant aspect of each Horizontal Topic: Direct Device - to - Device Communication, Massive Machine Communication, Moving Networks, Ultra - Dense Networks, and Ultra - Reliable Communication.Popovski, P.; Mange, G.; Fertl, P.; Gozálvez - Serrano, D.; Droste, H.; Bayer, N.; Roos, A.... (2014). D6.3 Intermediate system evaluation results. http://hdl.handle.net/10251/7676

    EU FP7 INFSO-ICT-317669 METIS, D1.1 Scenarios, requirements and KPIs for 5G mobile and wireless system

    No full text
    This deliverable introduces generic scenarios based on fundamental challenges, and the specific problem description of test cases that will be relevant for beyond future radio access. Specific characteristics of each scenario and each test case include the key assumptions regarding requirements and key performance indicators. In order not to constrain the potential solutions, the requirements are specified from an end-user perspective. The deliverable will not only serve as the guideline for the technical work and system concept design in METIS, but also can serve in external research communities to help to harmonize the work towards the future radio access system including the new generation system of 5

    Donor-Acceptor Dyes for Organic Photovoltaics

    No full text
    Small-molecule pi-systems bearing donor (D) and acceptor (A) groups constitute an interesting class of dyes because of their tunable strong absorption, which covers the visible and near-infrared range. The dipolarity associated with D-A structures directs antiparallel stacking arrangements in the solid state, thus reducing the dipolar disorder at the supramolecular level. Their straightforward synthesis and purification make them good candidates for photovoltaic application with power conversion efficiencies > 6 %. This review summarizes the application of D-A dyes, and in particular merocyanines, in organic photovoltaics in recent years
    corecore