4 research outputs found

    Urinary granzyme A mRNA is a biomarker to diagnose subclinical and acute cellular rejection in kidney transplant recipients

    Get PDF
    The distinction between T-cell-mediated rejection (TCMR) and other causes of kidney transplant dysfunction such as tubular necrosis requires biopsy. Subclinical rejection (SCR), an established risk factor for chronic allograft dysfunction, can only be diagnosed by protocol biopsy. A specific non-invasive biomarker to monitor immunological graft status would facilitate diagnosis and treatment of common transplantation-related complications. To identify possible markers, we measured urinary mRNA levels of several cytolytic proteins by quantitative PCR. Our cohort of 70 renal transplant recipients had biopsy proven type I and type II TCMR, acute tubular necrosis, SCR, calcineurin inhibitor-toxicity, cytomegalovirus infection, and stable graft function with normal histology. Granzyme A (GzmA) mRNA was significantly higher in subclinical and acute cellular rejection compared to patients with stable grafts or those with tubular necrosis with 80% sensitivity and up to 100% specificity. Granzyme B and perforin mRNA levels could significantly discriminate acute rejection from stable or tubular necrosis, but were not significantly elevated during SCR. Importantly, only GzmA mRNA remained below detection limits from grafts that were stable and most with tubular necrosis. Hence, the presented data indicate that urinary GzmA mRNA levels may entail a diagnostic non-invasive biomarker to distinguish patients with subclinical and acute cellular rejection from those with tubular necrosis or stable grafts

    Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer

    No full text
    Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies
    corecore