381 research outputs found

    Polarization fine-structure and enhanced single-photon emission of self-assembled lateral InGaAs quantum dot molecules embedded in a planar micro-cavity

    Full text link
    Single lateral InGaAs quantum dot molecules have been embedded in a planar micro-cavity in order to increase the luminescence extraction efficiency. Using a combination of metal-organic vapor phase and molecular beam epitaxy samples could be produced that exhibit a 30 times enhanced single-photon emission rate. We also show that the single-photon emission is fully switchable between two different molecular excitonic recombination energies by applying a lateral electric field. Furthermore, the presence of a polarization fine-structure splitting of the molecular neutral excitonic states is reported which leads to two polarization-split classically correlated biexciton exciton cascades. The fine-structure splitting is found to be on the order of 10 micro-eV.Comment: 14 pages, 4 figures; the following article has been submitted to Journal of Applied Physics (29th ICPS - invited paper); after it is published, it will be found at http://jap.aip.org

    Field transformations and simple models illustrating the impossibility of measuring off-shell effects

    Get PDF
    In the context of simple models illustrating field transformations in Lagrangian field theories we discuss the impossibility of measuring off-shell effects in nucleon-nucleon bremsstrahlung, Compton scattering, and related processes. To that end we introduce a simple phenomenological Lagrangian describing nucleon-nucleon bremsstrahlung and perform an appropriate change of variables leading to different off-shell behavior in the nucleon-nucleon amplitude as well as the photon-nucleon vertex. As a result we obtain a class of equivalent Lagrangians, generating identical S-matrix elements, of which the original Lagrangian is but one representative. We make use of this property in order to show that what appears as an off-shell effect in an S-matrix element for one Lagrangian may originate in a contact term from an equivalent Lagrangian. By explicit calculation we demonstrate for the case of nucleon-nucleon bremsstrahlung as well as nucleon Compton scattering the equivalence of observables from which we conclude that off-shell effects cannot in any unambiguous way be extracted from an S-matrix element. Finally, we also discuss some implications of introducing off-shell effects on a phenomenological basis, resulting from the requirement that the description of one process be consistent with that of other processes described by the same Lagrangian.Comment: 19 pages, Latex, using RevTe

    Efficient single-photon emission from electrically driven InP quantum dots epitaxially grown on Si(001)

    Full text link
    The heteroepitaxy of III-V semiconductors on silicon is a promising approach for making silicon a photonic platform for on-chip optical interconnects and quantum optical applications. Monolithic integration of both material systems is a long-time challenge, since different material properties lead to high defect densities in the epitaxial layers. In recent years, nanostructures however have shown to be suitable for successfully realising light emitters on silicon, taking advantage of their geometry. Facet edges and sidewalls can minimise or eliminate the formation of dislocations, and due to the reduced contact area, nanostructures are little affected by dislocation networks. Here we demonstrate the potential of indium phosphide quantum dots as efficient light emitters on CMOS-compatible silicon substrates, with luminescence characteristics comparable to mature devices realised on III-V substrates. For the first time, electrically driven single-photon emission on silicon is presented, meeting the wavelength range of silicon avalanche photo diodes' highest detection efficiency

    Nucleon-nucleon bremsstrahlung: An example of the impossibility of measuring off-shell amplitudes

    Get PDF
    For nearly fifty years theoretical and experimental efforts in nucleon-nucleon bremsstrahlung (NNγ\gamma) have been devoted to measuring off-shell amplitudes and distinguishing among various NN potentials on the basis of their off-shell behavior. New experiments are underway, designed specifically to attain kinematics further off shell than in the past, and thus to be more sensitive to the off-shell behavior. This letter shows that, contrary to these expectations, and due to the invariance of the S-matrix under transformations of the fields, the off-shell NN amplitude is as a matter of principle an unmeasurable quantity in NNγ\gamma.Comment: 9 pages, Latex, using RevTeX; Minor wording changes, title changed, version to be published in Phys. Rev. Letter

    Delta--Excitation and Exchange Corrections for NN--Bremsstrahlung

    Full text link
    The role of the relativistic amplitudes for a number of O(k){\cal O}(k) processes usually neglected in potential model calculations of NN--bremsstrahlung is investigated. In particular, we consider the Δ\Delta--excitation pole contributions related to the one--pion and one--rho exchange and in addition include the exchange contributions induced by the radiative ω,ρπγ\omega,\,\rho \to \pi \gamma decays. The contributions are calculated from relativistic Born amplitudes fitted to Δ\Delta--production and absorption data in the energy range up to 1 GeV and then used to supplement potential model and soft photon calculations for nucleon--nucleon bremsstrahlung. The effects on NNγNN\gamma--observables, although moderate in general, are found to be important in some kinematic domains.Comment: 15 pages in LaTex, using Revtex, 6 figures as uufile'd, compressed Postscript file included, TRIUMF preprint TRI-PP-94-9

    Polyharmonic approximation on the sphere

    Full text link
    The purpose of this article is to provide new error estimates for a popular type of SBF approximation on the sphere: approximating by linear combinations of Green's functions of polyharmonic differential operators. We show that the LpL_p approximation order for this kind of approximation is σ\sigma for functions having LpL_p smoothness σ\sigma (for σ\sigma up to the order of the underlying differential operator, just as in univariate spline theory). This is an improvement over previous error estimates, which penalized the approximation order when measuring error in LpL_p, p>2 and held only in a restrictive setting when measuring error in LpL_p, p<2.Comment: 16 pages; revised version; to appear in Constr. Appro

    Do activities of cytochrome P450 (CYP)3A, CYP2D6 and P-glycoprotein differ between healthy volunteers and HIV-infected patients?

    Full text link
    BACKGROUND: In inflammation and infection, cytochrome P450 (CYP) enzyme activities are down-regulated. Information on possible discrepancies in activities of CYP enzymes and drug transporters between HIV-infected patients and healthy people is limited. METHODS: We used midazolam, dextromethorphan and digoxin as in vivo phenotyping probes for CYP3A (CYP3A4/5), CYP2D6 and P-glycoprotein activities, respectively, and compared these activities between 12 healthy Caucasian volunteers and 30 treatment-naive HIV-infected patients. RESULTS: Among the HIV-infected patients, the overall CYP3A activity (apparent oral midazolam clearance) was approximately 50% of the activity observed in healthy volunteers (point estimate 0.490, 90% confidence interval [CI] 0.377-0.638). The CYP2D6 activity (plasma ratio area under the curve [AUC]; AUC(dextromethorphan)/AUC(dextrorphan)) was essentially unchanged (point estimate 1.289, 90% CI 0.778-2.136). P-glycoprotein activity was slightly lower in patients (digoxin maximum concentration point estimate 1.304, 90% CI 1.034-1.644). CONCLUSIONS: The overall CYP3A activity was approximately 50% lower in HIV-infected patients than in healthy volunteers. The CYP2D6 activity was highly variable, but, on average was not different between groups, whereas a marginally lower P-glycoprotein activity was observed in treatment-naive HIV-infected patients

    On spin-rotation contribution to nuclear spin conversion in C_{3v}-symmetry molecules. Application to CH_3F

    Get PDF
    The symmetrized contribution of E-type spin-rotation interaction to conversion between spin modifications of E- and A_1-types in molecules with C_{3v}-symmetry is considered. Using the high-J descending of collisional broadening for accidental rotational resonances between these spin modifications, it was possible to co-ordinate the theoretical description of the conversion with (updated) experimental data for two carbon-substituted isotopes of fluoromethane. As a result, both E-type spin-rotation constants are obtained. They are roughly one and a half times more than the corresponding constants for (deutero)methane.Comment: 13 pages with single-spacing, REVTeX, no figures, accepted for publication in <J. Phys. B

    Scattering and absorption of ultracold atoms by nanotubes

    Full text link
    We investigate theoretically how cold atoms, including Bose-Einstein condensates, are scattered from, or absorbed by nanotubes with a view to analysing recent experiments. In particular we consider the role of potential strength, quantum reflection, atomic interactions and tube vibrations on atom loss rates. Lifshitz theory calculations deliver a significantly stronger scattering potential than that found in experiment and we discuss possible reasons for this. We find that the scattering potential for dielectric tubes can be calculated to a good approximation using a modified pairwise summation approach, which is efficient and easily extendable to arbitrary geometries. Quantum reflection of atoms from a nanotube may become a significant factor at low temperatures, especially for non-metallic tubes. Interatomic interactions are shown to increase the rate at which atoms are lost to the nanotube and lead to non-trivial dynamics. Thermal nanotube vibrations do not significantly increase loss rates or reduce condensate fractions, but lower frequency oscillations can dramatically heat the cloud.Comment: 7 pages, 4 figure
    corecore