23 research outputs found
The Conditional Analogy GAN: Swapping Fashion Articles on People Images
We present a novel method to solve image analogy problems : it allows to
learn the relation between paired images present in training data, and then
generalize and generate images that correspond to the relation, but were never
seen in the training set. Therefore, we call the method Conditional Analogy
Generative Adversarial Network (CAGAN), as it is based on adversarial training
and employs deep convolutional neural networks. An especially interesting
application of that technique is automatic swapping of clothing on fashion
model photos. Our work has the following contributions. First, the definition
of the end-to-end trainable CAGAN architecture, which implicitly learns
segmentation masks without expensive supervised labeling data. Second,
experimental results show plausible segmentation masks and often convincing
swapped images, given the target article. Finally, we discuss the next steps
for that technique: neural network architecture improvements and more advanced
applications.Comment: To appear at the International Conference on Computer Vision, ICCV
2017, Workshop on Computer Vision for Fashio
Consistency Learning and Multiple Rankings Combination for Text Retrieval
Text retrieval is one of the most basic tasks in the field of information retrieval. This paper deals with retrieving relevant documents for text-based queries from a database. Several different methods for retrieving text are explored, and show widely differing performance on different queries. It is shown how each of those methods may be improved through a � consistency learning � framework, where properties of the database and similarities on three different levels, namely documents, words and synonym sets, are exploited to improve performance. Further gains are achieved when all of the basic functions are combined in a metamodel to get better retrieval accuracy than each of the individual models. Categories and Subject Descriptor
Learning representations from motion trajectories analysis and applications to robot planning and control
Analyse und Anwendung in Roboterplanung und -Regelung
Generating motion is a crucial aspect of articulated robotics. Many robot
manipulation tasks can be defined and solved as a motion trajectory generation
problem where the robot needs to calculate and execute a task-appropriate
movement. Multiple efficient methods have been developed for this problem in
the robotic community, but they do not make use of the patterns found in
motion data. We will propose in this thesis novel approaches to combine
machine learning and robotics. The main conceptual achievement of this thesis
is the successful fusion of machine learning and robotic algorithms to improve
motion generation and discover the structure of different motion tasks. By
observing examples of robot motions, optimal for a given task, we can find the
relevant features of the motions, and discover the latent structure inherent
in the interaction between robot and workspace. This leads to new algorithms
for planning and control which are demonstrated in numerous experiments to
improve on previous approaches in terms of speed and generalization ability.
For speeding up motion planning we developed an algorithm called Trajectory
Prediction. In the trajectory planning scenario the desired robot behavior is
specified by a cost function and a planner algorithm is used to generate low-
cost motions. Our contribution is to predict an appropriate initial trajectory
that can speed up the planner. We do this by learning a mapping from situation
to trajectory, and extracting the representations useful for such a mapping.
For learning from demonstration we developed an algorithm called Task Space
Retrieval Using Inverse Optimal Control. In this scenario no cost function is
available to spec- ify what is a good motion. By observing example
trajectories our method can learn a value function model and an efficient
sparse task space representation of the desired behavior. A controller for
motion generation is developed based on this value function, effectively
generalizing the demonstrated behavior in novel situations.Ein Schwerpunkt der Forschung an Robotern ist die Generierung von Bewegung. Um
die Gegenstände in seiner Umgebung handzuhaben und mit ihnen verschiedene Auf-
gaben zu lösen, muss ein Roboter die dafür notwendigen Bewegungtrajektorien
berech- nen und anschliessend ausführen. Eine Vielzahl Methoden zur
Generierung von Bewe- gung wurde in der Robotik entwickelt. Doch keine dieser
Methoden nutzt die Muster in vorangegangenen erfolgreichen Bewegungen aus, um
die Bewegungsgenerierung besser und schneller zu machen. In dieser
Doktorarbeit schlage ich neuartige Ansätze vor, die Techniken des Maschinellen
Lernens und der Robotik vereinen. Diese Ansätze er- möglichen es einem
Roboter, die Merkmale und latente Struktur in seiner Interaktion mit der
Umgebung zu analysieren und dadurch aus seiner Erfahrung effizientere Bewe-
gungen zu lernen. In zahlreichen Experimenten zeige ich, dass meine Ansätze
schneller und effizienter Bewegungen erzeugen als etablierte Techniken. Der
erste konkrete Beitrag zu Bewegungsplanung ist die so genannte Trajectory Pre-
diction. Unsere Methode kann, gegeben eine Weltbeschreibung, schnell eine
geeignete Trajektorie, aufgrund einer von Daten gelernten Funktion,
vorhersagen. Die von Daten gelernten Muster erlauben eine deutlich schnellere
Bewegungserzeugung in Vergleich zu Methoden die diese Daten nicht benutzen.
Diese Muster reflektieren Strukturen in der Anordnung von Objekte, die die
robotische Bewegung beinflussen. Mein zweiter Ansatz Task Space Retrieval
using Inverse Optimal Control ist eine Meth- ode zum Lernen aus der
Beobachtung einer Bewegungsdemonstration. Aus der Demon- stration lernt dieser
Ansatz eine Wertefunktion für gute Bewegungen und eine kompakte
Aufgabenrepräsentation. Dadurch kann ein Roboter auf Grundlage der gelernten
Werte- funktion in neuen Situationen angemessene Bewegungen erzeugen und sich
wie demon- striert verhalten, ohne dass ihm eine explizite
Aufgabenspezifikation gegeben werden muss
Trajectory prediction in Cluttered Voxel Environments
Abstract — Trajectory planning and optimization is a fundamental problem in articulated robotics. It is often viewed as a two phase problem of initial feasible path planning around obstacles and subsequent optimization of a trajectory satisfying dynamical constraints. There are many methods that can generate good movements when given enough time, but planning for high-dimensional robot configuration spaces in realistic environments with many objects in real time remains challenging. This work presents a novel way for faster movement planning in such environments by predicting good path initializations. We build on our previous work on trajectory prediction by adapting it to environments modeled with voxel grids and defining a frame invariant prototype trajectory space. The constructed representations can generalize to a wide range of situations, allowing to predict good movement trajectories and speed up convergence of robot motion planning. An empirical comparison of the effect on planning movements with a combination of different trajectory initializations and local planners is presented and tested on a Schunk arm manipulation platform with laser sensors in simulation and hardware. I
