31 research outputs found

    Halothiobacillus neapolitanus Carboxysomes Sequester Heterologous and Chimeric RubisCO Species

    Get PDF
    Background: The carboxysome is a bacterial microcompartment that consists of a polyhedral protein shell filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme that catalyzes the first step of CO(2) fixation via the Calvin-Benson-Bassham cycle. Methodology/Principal Findings: To analyze the role of RubisCO in carboxysome biogenesis in vivo we have created a series of Halothiobacillus neapolitanus RubisCO mutants. We identified the large subunit of the enzyme as an important determinant for its sequestration into alpha-carboxysomes and found that the carboxysomes of H. neapolitanus readily incorporate chimeric and heterologous RubisCO species. Intriguingly, a mutant lacking carboxysomal RubisCO assembles empty carboxysome shells of apparently normal shape and composition. Conclusions/Significance: These results indicate that carboxysome shell architecture is not determined by the enzyme they normally sequester. Our study provides, for the first time, clear evidence that carboxysome contents can be manipulated and suggests future nanotechnological applications that are based upon engineered protein microcompartments

    CO\u3ci\u3e2\u3c/i\u3e Fixation Kinetics of \u3ci\u3eHalothiobacillus neapolitanus\u3c/i\u3e Mutant Carboxysomes Lacking Carbonic Anhydrase Suggest the Shell Acts as a Diffusional Barrier for CO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    The widely accepted models for the role of carboxysomes in the carbon-concentrating mechanism of autotrophic bacteria predict the carboxysomal carbonic anhydrase to be a crucial component. The enzyme is thought to dehydrate abundant cytosolic bicarbonate and provide ribulose 1.5-bisphosphate carboxylase/oxygenase (RubisCO) sequestered within the carboxysome with sufficiently high concentrations of its substrate, CO2, to permit its efficient fixation onto ribulose 1,5-bisphosphate. In this study, structure and function of carboxysomes purified from wild type Halothiobacillus neapolitanus and from a high CO2-requiring mutant that is devoid of carboxysomal carbonic anhydrase were compared. The kinetic constants for the carbon fixation reaction confirmed the importance of a functional carboxysomal carbonic anhydrase for efficient catalysis by RubisCO. Furthermore, comparisons of the reaction in intact and broken microcompartments and by purified carboxysomal RubisCO implicated the protein shell of the microcompartment as impeding diffusion of CO2 into and out of the carboxysome interior

    The Pentameric Vertex Proteins Are Necessary for the Icosahedral Carboxysome Shell to Function as a CO\u3csub\u3e2\u3c/sub\u3e Leakage Barrier

    Get PDF
    Background Carboxysomes are polyhedral protein microcompartments found in many autotrophic bacteria; they encapsulate the CO2 fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) within a thin protein shell and provide an environment that enhances the catalytic capabilities of the enzyme. Two types of shell protein constituents are common to carboxysomes and related microcompartments of heterotrophic bacteria, and the genes for these proteins are found in a large variety of bacteria. Methodology/Principal Findings We have created a Halothiobacillus neapolitanus knockout mutant that does not produce the two paralogous CsoS4 proteins thought to occupy the vertices of the icosahedral carboxysomes and related microcompartments. Biochemical and ultrastructural analyses indicated that the mutant predominantly forms carboxysomes of normal appearance, in addition to some elongated microcompartments. Despite their normal shape, purified mutant carboxysomes are functionally impaired, although the activities of the encapsulated enzymes are not negatively affected. Conclusions/Significance In the absence of the CsoS4 proteins the carboxysome shell loses its limited permeability to CO2 and is no longer able to provide the catalytic advantage RubisCO derives from microcompartmentalization. This study presents direct evidence that the diffusion barrier property of the carboxysome shell contributes significantly to the biological function of the carboxysome

    Advances in Understanding Carboxysome Assembly in \u3ci\u3eProchlorococcus\u3c/i\u3e and \u3ci\u3eSynechococcus\u3c/i\u3e Implicate CsoS2 as a Critical Component

    Get PDF
    The marine Synechococcus and Prochlorococcus are the numerically dominant cyanobacteria in the ocean and important in global carbon fixation. They have evolved a CO2-concentrating-mechanism, of which the central component is the carboxysome, a self-assembling proteinaceous organelle. Two types of carboxysome, α and β, encapsulating form IA and form IB d-ribulose-1,5-bisphosphate carboxylase/oxygenase, respectively, differ in gene organization and associated proteins. In contrast to the β-carboxysome, the assembly process of the α-carboxysome is enigmatic. Moreover, an absolutely conserved α-carboxysome protein, CsoS2, is of unknown function and has proven recalcitrant to crystallization. Here, we present studies on the CsoS2 protein in three model organisms and show that CsoS2 is vital for α-carboxysome biogenesis. The primary structure of CsoS2 appears tripartite, composed of an N-terminal, middle (M)-, and C-terminal region. Repetitive motifs can be identified in the N- and M-regions. Multiple lines of evidence suggest CsoS2 is highly flexible, possibly an intrinsically disordered protein. Based on our results from bioinformatic, biophysical, genetic and biochemical approaches, including peptide array scanning for protein-protein interactions, we propose a model for CsoS2 function and its spatial location in the α-carboxysome. Analogies between the pathway for β-carboxysome biogenesis and our model for α-carboxysome assembly are discussed

    The Pentameric Vertex Proteins Are Necessary for the Icosahedral Carboxysome Shell to Function as a CO2 Leakage Barrier

    Get PDF
    BACKGROUND: Carboxysomes are polyhedral protein microcompartments found in many autotrophic bacteria; they encapsulate the CO(2) fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) within a thin protein shell and provide an environment that enhances the catalytic capabilities of the enzyme. Two types of shell protein constituents are common to carboxysomes and related microcompartments of heterotrophic bacteria, and the genes for these proteins are found in a large variety of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We have created a Halothiobacillus neapolitanus knockout mutant that does not produce the two paralogous CsoS4 proteins thought to occupy the vertices of the icosahedral carboxysomes and related microcompartments. Biochemical and ultrastructural analyses indicated that the mutant predominantly forms carboxysomes of normal appearance, in addition to some elongated microcompartments. Despite their normal shape, purified mutant carboxysomes are functionally impaired, although the activities of the encapsulated enzymes are not negatively affected. CONCLUSIONS/SIGNIFICANCE: In the absence of the CsoS4 proteins the carboxysome shell loses its limited permeability to CO(2) and is no longer able to provide the catalytic advantage RubisCO derives from microcompartmentalization. This study presents direct evidence that the diffusion barrier property of the carboxysome shell contributes significantly to the biological function of the carboxysome

    Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers

    Get PDF
    BACKGROUND: Many breast, pancreatic, colonic and non-small-cell lung carcinoma lines express CEACAM6 (NCA-90) and CEACAM5 (carcinoembryonic antigen, CEA), and antibodies to both can affect tumor cell growth in vitro and in vivo. Here, we compare both antigens as a function of histological phenotype in breast, pancreatic, lung, ovarian, and prostatic cancers, including patient-matched normal, primary tumor, and metastatic breast and colonic cancer specimens. METHODS: Antigen expression was determined by immunohistochemistry (IHC) using tissue microarrays with MN-15 and MN-3 antibodies targeting the A1B1- and N-domains of CEACAM6, respectively, and the MN-14 antibody targeting the A3B3 domain of CEACAM5. IHC was performed using avidin-biotin-diaminobenzide staining. The average score ± SD (0 = negative/8 = highest) for each histotype was recorded. RESULTS: For all tumors, the amount of CEACAM6 expressed was greater than that of CEACAM5, and reflected tumor histotype. In breast tumors, CEACAM6 was highest in papillary > infiltrating ductal > lobular > phyllodes; in pancreatic tumors, moderately-differentiated > well-differentiated > poorly-differentiated tumors; mucinous ovarian adenocarcinomas had almost 3-fold more CEACAM6 than serous ovarian adenocarcinomas; lung adenocarcinomas > squamous tumors; and liver metastases of colonic carcinoma > primary tumors = lymph nodes metastases > normal intestine. However, CEACAM6 expression was similar in prostate cancer and normal tissues. The amount of CEACAM6 in metastatic colon tumors found in liver was higher than in many primary colon tumors. In contrast, CEACAM6 immunostaining of lymph node metastases from breast, colon, or lung tumors was similar to the primary tumor. CONCLUSION: CEACAM6 expression is elevated in many solid tumors, but variable as a function of histotype. Based on previous work demonstrating a role for CEACAM6 in tumor cell migration, invasion and adhesion, and formation of distant metastases (Blumenthal et al., Cancer Res 65: 8809–8817, 2005), it may be a promising target for antibody-based therapy

    The Structure of an Ornithine-containing Lipid from \u3ci\u3eThiobacillus thiooxidans\u3c/i\u3e

    Get PDF
    The structure of an ornithine-containing lipid from Thio-bacillus thiooxidans has been elucidated. Methanolysis of the lipid released methyl cis-ll,lZ-methylene-Z-hydroxyoctadecanoate. Acid hydrolysis of the residue yielded ornithine and a mixture of fatty acids, the major components of which were 3-hydroxyhexadecanoic and 2-hexadecenoic acids. Identification of the 3-hydroxy fatty acid was based on the thin layer chromatographic mobilities of the acid, its methyl ester, the methyl ether, and acetate derivatives of its methyl ester, on the equivalent chain lengths of the derivatives of the acid and the acid obtained by oxidation of the natural acid with permanganate, and on mass spectral studies. Similar techniques were used for the identification of 2-hexadecenoic acid. The minor fatty acids and the 2-hexadecenoic acid were found to be degradation products of the 3-hydroxy acid

    Carboxysomes and Carboxysome-Like Inclusions

    No full text
    Carboxysomes and related polyhedral bacterial inclusions are complex structures that are composedof a limited set of related proteins. The importance of these prokaryotic organelles as metabolicorganizers in autotrophs as well as heterotrophic bacteria is becoming much more apparent. The carboxysome,which is by far the best characterized representative of these inclusions, is found in a variety ofphylogenetically distant autotrophic bacteria and contains the central CO 2fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The particle participates in theessential CO2 concentrating mechanism and is likely protecting RuBisCO from oxygen.By contrast, the functions of polyhedral inclusions in heterotrophic prokaryotes that have been experimentallyobserved or inferred from comparative genomic analyses are less well understood. This review summarizesthe current state of knowledge regarding structure, function and genetics of carboxysomes and related polyhedralmicrocompartments

    Carboxysomes and Their Structural Organization In Prokaryotes

    No full text
    Carboxysomes are the archetypical examples of primitive proteinaceous organelles found in bacteria, collectively termed bacterial microcompartments (BMCs). Recent studies using current techniques for imaging and structural elucidation have resulted in a quantum leap of our mechanistic understanding of structure/function relationships in these bacterial inclusions. Bioinformatic analysis of the rapidly growing collection of sequenced bacterial genomes has revealed that BMCs of different types appear to be widely employed by microbes to organize their metabolism in much the same way that eukaryotes use sensu stricto organelles. This review focuses on some recently revealed properties of carboxysomes and points out pressing open questions. Some of these questions have remained unanswered since the discovery of carboxysomes; others have been raised by more recent discoveries
    corecore