6 research outputs found

    Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity

    Get PDF
    Chronic pain is highly variable between individuals, as is the response to analgesics. Although much of the variability in chronic pain and analgesic response is heritable, an understanding of the genetic determinants underlying this variability is rudimentary1. Here we show that variation within the coding sequence of the gene encoding the P2X7 receptor (P2X7R) affects chronic pain sensitivity in both mice and humans. P2X7Rs, which are members of the family of ionotropic ATP-gated receptors, have two distinct modes of function: they can function through their intrinsic cationic channel or by forming nonselective pores that are permeable to molecules with a mass of up to 900 Da2,3. Using genome-wide linkage analyses, we discovered an association between nerve-injury–induced pain behavior (mechanical allodynia) and the P451L mutation of the mouse P2rx7 gene, such that mice in which P2X7Rs have impaired pore formation as a result of this mutation showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-forming P2rx7 allele. Moreover, in two independent human chronic pain cohorts, a cohort with pain after mastectomy and a cohort with osteoarthritis, we observed a genetic association between lower pain intensity and the hypofunctional His270 (rs7958311) allele of P2RX7. Our findings suggest that selectively targeting P2X7R pore formation may be a new strategy for individualizing the treatment of chronic pain

    Addressing Safety Issues of Health Care Personnel, Family Members, and the Environment

    No full text

    How Does Availability of Meteorological Forcing Data Impact Physically Based Snowpack Simulations?

    No full text
    Physically based models facilitate understanding of seasonal snow processes but require meteorological forcing data beyond air temperature and precipitation (e.g., wind, humidity, shortwave radiation, and longwave radiation) that are typically unavailable at automatic weather stations (AWSs) and instead are often represented with empirical estimates. Research is needed to understand which forcings (after temperature and precipitation) would most benefit snow modeling through expanded observation or improved estimation techniques. Here, the impact of forcing data availability on snow model output is assessed with data-withholding experiments using 3-yr datasets at well-instrumented sites in four climates. The interplay between forcing availability and model complexity is examined among the Utah Energy Balance (UEB), the Distributed Hydrology Soil Vegetation Model (DHSVM) snow submodel, and the snow thermal model (SNTHERM). Sixty-four unique forcing scenarios were evaluated, with different assumptions regarding availability of hourly meteorological observations at each site. Modeled snow water equivalent (SWE) and snow surface temperature Tsurf diverged most often because of availability of longwave radiation, which is the least frequently measured forcing in cold regions in the western United States. Availability of longwave radiation (i.e., observed vs empirically estimated) caused maximum SWE differences up to 234 mm (57% of peak SWE), mean differences up to 6.2°C in Tsurf, and up to 32 days difference in snow disappearance timing. From a model data perspective, more common observations of longwave radiation at AWSs could benefit snow model development and applications, but other aspects (e.g., costs, site access, and maintenance) need consideration

    Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity

    No full text
    Chronic pain is highly variable between individuals, as is the response to analgesics. Although much of the variability in chronic pain and analgesic response is heritable, an understanding of the genetic determinants underlying this variability is rudimentary(1). Here we show that variation within the coding sequence of the gene encoding the P2X7 receptor (P2X7R) affects chronic pain sensitivity in both mice and humans. P2X7Rs, which are members of the family of ionotropic ATP-gated receptors, have two distinct modes of function: they can function through their intrinsic cationic channel or by forming nonselective pores that are permeable to molecules with a mass of up to 900 Da(2,3). Using genome-wide linkage analyses, we discovered an association between nerve-injury–induced pain behavior (mechanical allodynia) and the P451L mutation of the mouse P2rx7 gene, such that mice in which P2X7Rs have impaired pore formation as a result of this mutation showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-forming P2rx7 allele. Moreover, in two independent human chronic pain cohorts, a cohort with pain after mastectomy and a cohort with osteoarthritis, we observed a genetic association between lower pain intensity and the hypofunctional His270 (rs7958311) allele of P2RX7. Our findings suggest that selectively targeting P2X7R pore formation may be a new strategy for individualizing the treatment of chronic pain

    Activation of Protein Kinase Cη by Type I Interferons*

    No full text
    Type I interferons (IFNs) are cytokines with diverse biological properties, including antiviral, growth inhibitory, and immunomodulatory effects. Although several signaling pathways are activated during engagement of the type I IFN receptor and participate in the induction of IFN responses, the mechanisms of generation of specific signals for distinct biological effects remain to be elucidated. We provide evidence that a novel member of the protein kinase C (PKC) family of proteins is rapidly phosphorylated and activated during engagement of the type I IFN receptor. In contrast to other members of the PKC family that are also regulated by IFN receptors, PKCη does not regulate IFN-inducible transcription of interferon-stimulated genes or generation of antiviral responses. However, its function promotes cell cycle arrest and is essential for the generation of the suppressive effects of IFNα on normal and leukemic human myeloid (colony-forming unit-granulocyte macrophage) bone marrow progenitors. Altogether, our studies establish PKCη as a unique element in IFN signaling that plays a key and essential role in the generation of the regulatory effects of type I IFNs on normal and leukemic hematopoiesis
    corecore