2,567 research outputs found

    The effect of virtual mindfulness-based interventions on sleep quality: A systematic review of randomized controlled trials

    Get PDF
    PURPOSE OF REVIEW: We summarized peer-reviewed literature investigating the effect of virtual mindfulness-based interventions (MBIs) on sleep quality. We aimed to examine the following three questions: (1) do virtual MBIs improve sleep quality when compared with control groups; (2) does the effect persist long-term; and (3) is the virtual delivery method equally feasible compared to the in-person delivery method? RECENT FINDINGS: Findings suggest that virtual MBIs are equivalent to evidence-based treatments, and to a limited extent, more effective than non-specific active controls at reducing some aspects of sleep disturbance. Overall, virtual MBIs are more effective at improving sleep quality than usual care controls and waitlist controls. Studies provide preliminary evidence that virtual MBIs have a long-term effect on sleep quality. Moreover, while virtual MBI attrition rates are comparable to in-person MBI attrition rates, intervention adherence may be compromised in the virtual delivery method. This review highlights virtual MBIs as a potentially effective alternative to managing sleep disturbance during pandemic-related quarantine and stay-at-home periods. This is especially relevant due to barriers of accessing in-person interventions during the pandemic. Future studies are needed to explore factors that influence adherence and access to virtual MBIs, with a particular focus on diverse populations

    The local GLP-1 system in the olfactory bulb is required for odor-evoked cephalic phase of insulin release in mice

    Get PDF
    Objective: The olfactory bulb (OB) codes for sensory information and contributes to the control of energy metabolism by regulating foraging and cephalic phase responses. Mitral cells are the main output neurons of the OB. The glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) system in the OB (GLP-1ᴼᴮ) has been shown to be a major regulator of mitral cell activity but its function in vivo is unclear. Therefore, we investigated the role of GLP-1ᴼᴮ in foraging behavior and odor-evoked Cephalic Phase Insulin Release (CPIR)./ Methods and results: By fluorescent labeling, we confirmed the presence of GLP-1 producing neurons and the expression of GLP-1R in the mouse OB. In response to food odor presentation, we collected blood, quantified plasma insulin by ELISA and showed the existence of an odor-evoked CPIR in lean mice but its absence in obese animals. Expression of shRNA against preproglucagon mRNA in the OB resulted in blunted CPIR in lean mice. Injecting Exendin (9-39), a GLP-1R antagonist, into the OB of lean mice also resulted in decreased CPIR. Since parasympathetic cholinergic input to the pancreas is known to be partly responsible for CPIR, we systemically administered the muscarinic M3 receptor antagonist 4-DAMP which resulted in a reduced odor-evoked CPIR. Finally, local injection of Exendin (9-39) in the OB extinguished olfactory foraging in lean mice whereas the injection of the GLP-1R agonist Exendin-4 rescued the loss of foraging behavior in obese mice./ Conclusions: Our results demonstrate that GLP-1ᴼᴮ controls olfactory foraging and is required for odor-evoked CPIR. We describe a new crucial brain function for GLP-1 and GLP-1R expressed within the brain

    Singlet fission and tandem solar cells reduce thermal degradation and enhance lifespan

    Full text link
    The economic value of a photovoltaic installation depends upon both its lifespan and power conversion efficiency. Progress toward the latter includes mechanisms to circumvent the Shockley-Queisser limit, such as tandem designs and multiple exciton generation (MEG). Here we explain how both silicon tandem and MEG-enhanced silicon cell architectures result in lower cell operating temperatures, increasing the device lifetime compared to standard c-Si cells. Also demonstrated are further advantages from MEG enhanced silicon cells: (i) the device architecture can completely circumvent the need for current-matching; and (ii) upon degradation, tetracene, a candidate singlet fission (a form of MEG) material, is transparent to the solar spectrum. The combination of (i) and (ii) mean that the primary silicon device will continue to operate with reasonable efficiency even if the singlet fission layer degrades. The lifespan advantages of singlet fission enhanced silicon cells, from a module perspective, are compared favorably alongside the highly regarded perovskite/silicon tandem and conventional c-Si modules

    Interactions between subunits a and b in the rotary ATP synthase as determined by cross-linking

    Get PDF
    The interaction of the membrane traversing stator subunits a and b of the rotary ATP synthase was probed by substitution of a single Cys into each subunit with subsequent Cu2+ catalyzed cross-linking. Extensive interaction between the transmembrane (TM) region of one b subunit and TM2 of subunit a was indicated by cross-linking with 6 Cys pairs introduced into these regions. Additional disulfide cross-linking was observed between the N-terminus of subunit b and the periplasmic loop connecting TM4 and TM5 of subunit a. Finally, benzophenone-4-maleimide derivatized Cys in the 2–3 periplasmic loop of subunit a were shown to cross-link with the periplasmic N-terminal region of subunit b. These experiments help to define the juxtaposition of subunits b and a in the ATP synthase

    In vivo γ-tocopherol supplementation decreases systemic oxidative stress and cytokine responses of human monocytes in normal and asthmatic subjects

    Get PDF
    We have recently reported that gamma tocopherol (γT) reduces allergen and zymosan-induced inflammation using rodent models. As an initial step in extending these observations to humans, we conducted an open-label, Phase I dosing study of two doses (one or two capsules/daily for one week) of a gamma tocopherol rich preparation containing 623mg of γ tocopherol, 61.1mg of d-α-tocopherol, 11.1 mg of d-β-tocopherol (11.1mg), and 231 mg of d-σ-tocopherol per capsule. Endpoints for this study include serum levels of 5-nitro-gamma tocopherol, as a marker of oxidative stress, and changes in serum gamma, alpha and delta tocopherol and γ-2′-carboxyethyl-6-hydroxychroman (CEHC) six and 24 hours after the first dose and after 1 week of treatment. To assess biological activity of this treatment, we obtained peripheral blood mononuclear cells at baseline and after 1 week of treatment with 2 capsules of a gamma tocopherol rich preparation/day, and examined the inflammatory cytokine response of these cells in culture to ex-vivo endotoxin/LPS (0.01 ng/ml) challenge. We also monitored a number of safety endpoints to examine how well this preparation is tolerated in 8 normal volunteers (4 allergic and 4 non-allergic) and 8 allergic asthmatics. We further obtained human monocytes from a subset of these volunteers and treated them ex vivo with γT, αT,γ-CEHC and α-CEHC and assessed their actions on LPS induced degradation of IkBα, and JNK signaling and ROS generation. As detailed herein, this open label study demonstrates that gamma tocopherol enriched supplementation decreased systemic oxidative stress, increased serum levels of gamma tocopherol, and inhibited monocyte responses to LPS without any adverse health effects. Further,in vitro treatment of human monocytes with γ-CEHC and α-CEHC inhibits ROS generation and LPS-induced degradation of IκB and JNK activation

    Cone Identification in Choroideremia: Repeatability, Reliability, and Automation Through Use of a Convolutional Neural Network

    Get PDF
    Purpose: Adaptive optics imaging has enabled the visualization of photoreceptors both in health and disease. However, there remains a need for automated accurate cone photoreceptor identification in images of disease. Here, we apply an open-source convolutional neural network (CNN) to automatically identify cones in images of choroideremia (CHM). We further compare the results to the repeatability and reliability of manual cone identifications in CHM. Methods: We used split-detection adaptive optics scanning laser ophthalmoscopy to image the inner segment cone mosaic of 17 patients with CHM. Cones were manually identified twice by one experienced grader and once by two additional experienced graders in 204 regions of interest (ROIs). An open-source CNN either pre-trained on normal images or trained on CHM images automatically identified cones in the ROIs. True and false positive rates and Dice\u27s coefficient were used to determine the agreement in cone locations between data sets. Interclass correlation coefficient was used to assess agreement in bound cone density. Results: Intra- and intergrader agreement for cone density is high in CHM. CNN performance increased when it was trained on CHM images in comparison to normal, but had lower agreement than manual grading. Conclusions: Manual cone identifications and cone density measurements are repeatable and reliable for images of CHM. CNNs show promise for automated cone selections, although additional improvements are needed to equal the accuracy of manual measurements. Translational Relevance: These results are important for designing and interpreting longitudinal studies of cone mosaic metrics in disease progression or treatment intervention in CHM

    Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 120 (2015): 363–378, doi:10.1002/2014JF003180.Recent fire activity throughout Alaska has increased the need to understand postfire impacts on soils and permafrost vulnerability. Our study utilized data and modeling from a permafrost and ecosystem gradient to develop a mechanistic understanding of the short- and long-term impacts of tundra and boreal forest fires on soil thermal dynamics. Fires influenced a variety of factors that altered the surface energy budget, soil moisture, and the organic-layer thickness with the overall effect of increasing soil temperatures and thaw depth. The postfire thickness of the soil organic layer and its impact on soil thermal conductivity was the most important factor determining postfire soil temperatures and thaw depth. Boreal and tundra ecosystems underlain by permafrost experienced smaller postfire soil temperature increases than the nonpermafrost boreal forest from the direct and indirect effects of permafrost on drainage, soil moisture, and vegetation flammability. Permafrost decreased the loss of the insulating soil organic layer, decreased soil drying, increased surface water pooling, and created a significant heat sink to buffer postfire soil temperature and thaw depth changes. Ecosystem factors also played a role in determining postfire thaw depth with boreal forests taking several decades longer to recover their soil thermal properties than tundra. These factors resulted in tundra being less sensitive to postfire soil thermal changes than the nonpermafrost boreal forest. These results suggest that permafrost and soil organic carbon will be more vulnerable to fire as climate warms.We are pleased to acknowledge funding from the US National Science Foundation, grants DEB-1026843 and EF-1065587, to the Marine Biological Laboratory. Additional logistical support was provided by Toolik Field Station and CH2MHill, funded by NSF's Office of Polar Programs.2015-08-2
    • …
    corecore