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Purpose: Adaptive optics imaging has enabled the visualization of photoreceptors
both in health and disease. However, there remains a need for automated accurate
cone photoreceptor identification in images of disease. Here, we apply an open-source
convolutional neural network (CNN) to automatically identify cones in images of choroi-
deremia (CHM). We further compare the results to the repeatability and reliability of
manual cone identifications in CHM.

Methods: We used split-detection adaptive optics scanning laser ophthalmoscopy to
image the inner segment cone mosaic of 17 patients with CHM. Cones were manually
identified twice by one experienced grader and once by two additional experienced
graders in 204 regions of interest (ROIs). An open-source CNN either pre-trained on
normal images or trained on CHM images automatically identified cones in the ROIs.
True and false positive rates and Dice’s coefficient were used to determine the agree-
ment in cone locations between data sets. Interclass correlation coefficient was used to
assess agreement in bound cone density.

Results: Intra- and intergrader agreement for cone density is high in CHM. CNN perfor-
mance increased when it was trained on CHM images in comparison to normal, but had
lower agreement than manual grading.

Conclusions:Manual cone identifications and cone density measurements are repeat-
able and reliable for images of CHM. CNNs show promise for automated cone selec-
tions, although additional improvements are needed to equal the accuracy of manual
measurements.

Translational Relevance: These results are important for designing and interpreting
longitudinal studies of cone mosaic metrics in disease progression or treatment inter-
vention in CHM.

Introduction

Adaptive optics (AOs) ophthalmoscopy, includ-
ing adaptive optics scanning laser ophthalmoscopy
(AOSLO),1 has enabled high-resolution observa-
tion of the living human retina both in health and

disease.2,3 Main advantages of AO ophthalmoscopy
include the ability to observe single cells in vivo
and to track those same cells over time. Indeed,
AO ophthalmoscopy has been used to describe
the degeneration of cone photoreceptor structure
using metrics, such as cone density or spacing, in
numerous inherited retinal diseases, including retinitis
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pigmentosa,4–7 Stargardt’s,8–10 achromatopsia,11–14
and choroideremia (CHM),15–17 among others.2,3 In
addition, investigators have demonstrated longitudinal
imaging of the same photoreceptors over time.18–20

Despite these advantages, challenges remain for
translating AOSLO imaging into large-scale clinical
studies to follow disease progression. Most AO studies
to date have been performed through cross-sectional
analysis and include only a relatively small number
of patients.2 As studies transition from small cross-
sectional studies to larger longitudinal studies, investi-
gators need to know the reliability with which they can
quantify mosaic metrics and will need to obtain those
measurements within a reasonably quick time period.
The present study considers these issues within the
context of one inherited retinal degeneration, choroi-
deremia (CHM).

CHM is an X-linked inherited retinal degen-
eration caused by mutations in the CHM gene
leading to nonfunctional Rab escort protein-1.21,22
Patients present with nyctalopia and constricted visual
fields, leading to tunnel vision and ultimately blind-
ness.23 Clinical retinal imaging of CHM has shown
central islands of retained retinal structure with
sharp borders demarcating a narrow transition zone
between retained and atrophic retinal areas showing
loss of the photoreceptors, retinal pigment epithelium,
and choroid.24 Cross-sectional studies using AOSLO
imaging have revealed patients with CHM have a
contiguous photoreceptor mosaic within their central
islands, with some regions showing normal or near
normal cone density, whereas others show reduced
cone density.15–17 Functional sensitivity testing with
AO microperimetry has revealed close correspondence
between retained retinal function and structure, with
sharp losses in function being co-located with the sharp
structural transitions between intact and atrophic
retina.25

Previous AOSLO cross-sectional studies investigat-
ing CHM used manual identification of cone locations
to quantify the cone photoreceptor phenotype.15,16
Although manual cone identification is considered the
gold-standard for assessing cone mosaic metrics,26 the
intragrader repeatability and intergrader reliability for
cone density measurement in CHM remains unknown.
For studies that aim to show true retinal change
through longitudinal analysis, this informationmust be
understood.

In addition, manual analysis of cone density
requires a large amount of grader effort. As a result,
there remains a trade-off between including more
images/time points/patients in a study and complet-
ing the study within a short timeframe. Using fully
automated methods to identify cones could offer a

substantial time-saving advantage. Recent advances
have demonstrated that a convolutional neural network
(CNN) may be trained to identify cone locations
within normal AOSLO images and shows good agree-
mentwithmanual cone identifications.27 Retraining the
network using multimodal images from patients with
achromatopsia has resulted in automated cone identi-
fications in achromatopsia images with good agree-
ment to manual identifications.28 In addition, a multi-
dimensional recurrent neural network has been shown
to yield automatic cone identifications in Stargardt
disease in good agreement with manual identifica-
tions.29 However, it remains to be determined to what
extent these techniques can be applied to patients with
other retinal diseases as different diseases present with
varying phenotypes in AOSLO images.2

In the present study, we address the issues described
above for translating quantifications of cone metrics
for CHM into ones that can be readily applied to
longitudinal clinical trials. We asked: to what extent
are cone identifications and cone density measure-
ments repeatable and reliable in CHM? To answer this
question, we investigated intragrader repeatability and
intergrader reliability for identifying cone locations
and quantifying cone density using non-confocal split-
detection AOSLO images showing the inner segment
cone mosaic in patients with CHM. We then asked, to
what extent do automatic cone identifications from an
open-source CNN-based algorithm agree with manual
cone identifications in CHM? To answer this, we used
an open-source CNN pretrained on normal images or
retrained with CHM images to automatically identify
cones, and compared the CNN automated cone identi-
fications to the manual identifications and the results
found for intragrader and intergrader agreement.

Methods

This research followed the Declaration of Helsinki
and was approved by the Institutional Review Board at
the University of Pennsylvania. Following an explana-
tion of the study, all patients gave informed consent or
assent with parental permission, and were voluntarily
enrolled in the study.

Seventeen eyes from 17 patients with CHM were
included in the study. Axial lengths of each eye were
measured using an IOL Master examination (Carl
Zeiss Meditec, Dublin, CA). AOSLO images were
scaled proportionally by axial length as has been done
previously.30,31

The AOSLO used in this study has been previously
described.32,33 Patients were aligned to the imaging
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system using a dental impression. Wavefront sensing
was performed with an 848 �26 nm superluminescent
diode (Superlum, Cork, Ireland). Aberration correc-
tion was performed using a 97-actuator deformable
mirror (Alpao SAS, St. Martin, France). Multi-
modal imaging was performed with a 795 �15.3 nm
superluminescent diode (Superlum) and three photo-
multiplier tubes (Hamamatsu Corporation, Naka-ku,
Japan) configured for confocal and nonconfocal split-
detection reflectance imaging.

Patients with CHM were instructed to fixate with
the imaging eye at a target. AOSLO image sequences
were acquired over the central 3 x 3 degrees surround-
ing fixation and along all four meridians. Image
sequences were desinusoided, a reference frame was
automatically chosen using a custom MatLab (The
MathWorks Inc., Natick, MA) algorithm based on the
method published by Salmon et al.,34 and 50 frames
were registered using custom software that removes
intra-frame distortions caused by eye motion.35 Regis-
tered images were then averaged together and the
averaged images were “dedistorted” using a custom
MatLab algorithm based on the method published by
Bedggood and Metha36 to remove distortions caused
by eye motion from the reference frame. These images
were then automatically montaged using a custom
algorithm as previously described.37 Regions of inter-
est (ROIs) along the retinal meridians showing the cone
photoreceptor inner segment mosaic in the noncon-
focal, split-detection imaging modality were manually
selected from the montages. A total of 204 ROIs were
cropped from the 17 CHM montages (range: 5–16
ROIs per montage). ROI locations ranged from 135
to 2210 μm from fixation, with an average of 468 ±
316 μm (mean ± SD). ROIs were square with 70 ±
22 μm sides (mean ± SD). These 204 ROIs were then
used to assess intra-observer repeatability and inter-
observer reliability for manual cone identifications and
the quality of automated cone identifications through
use of an open-source CNN.27 Each experiment is
described in detail below.

Intra-Observer Repeatability

An experienced grader (grader 1, J.I.W.M.)
manually identified cones in the split-detection images
of all 204 ROIs using custom software (MOSAIC;
Translational Imaging Innovations). Throughout the
remainder of the text, we will refer to these cone
identifications as grader 1A. Each ROI was presented
in a randomized order and the grader was masked
to the subject ID and retinal location of the image.
The grader was able to adjust contrast, brightness,
and magnification of the ROI image while manually

identifying cones by clicking on the center of each
cell to record the cone location. Six of the patients’
images also had the confocal image available for
viewing, although the grader was instructed to use the
split detection image as the primary source for cone
identifications.

Grader 1 then regraded the ROIs by manually
identifying all the cones in the split-detection image
a second time using the same custom software
(MOSAIC; Translational Imaging Innovations); we
will refer to this set of cone identifications as grader
1B. The gradings were separated by a minimum of 6
months. The grader was again masked to subject ID
and retinal location and the images were presented in a
randomized order.

We then compared the cone identifications made by
grader 1A to grader 1B. Using grader 1A as the ground
truth, we calculated the true positives, false positives,
and false negatives in grader 1B by comparing the list
of cone coordinates. To be considered a true positive, a
cone would need to be marked in both sets of grades.
To find cones marked in both sets of grades, we first
combined the coordinate lists of both grading into one
master list of coordinates. We then found the nearest
coordinate for each selection in the master list and used
the mean nearest coordinate distance plus two times
the SD of the nearest coordinate distance as the thresh-
old distance for determining whether a marking from
the second set was considered the same cone as a cone
identified in the first set.31 Cones that fell outside of this
distance were considered separate cones. If more than
one cone from the second grading fell within the thresh-
old distance from a cone in the first grading, the closer
of the two cones was considered the match. From this
grouping between cone identifications, we determined
the number of true positives (NTP, cones that were
identified at the same location for both sets of grades),
false positives (NFP, cones that were identified in grader
1B but not grader 1A), and false negatives (NFN, cones
that were identified in grader 1A but not grader 1B).
The total number of cone identifications made can be
expressed as:

Ncomparison_set = NTP + NFP (1)

Nground_truth_set = NTP + NFN (2)

We then measured the true positive rate, the false
positive rate, and Dice’s coefficient38 (a metric for
assessing similarity) between the two sets of cone
identifications, given by the following equations:

true positive rate = NTP /Nground_truth_set (3)
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f alse positive rate = NFP /Ncomparison_set (4)

Dice′s coe f f icient = 2NTP /
(
Nground_truth_set

+Ncomparison_set
)

(5)

For the intragrader repeatability analysis, NGrader 1A
was used as Nground_truth_set and NGrader 1B was used as
Ncomparison_set.

In addition to assessing the precision of repeated
cone identifications, we also compared the bound cone
densities calculated from each grading. Bound cone
density reduces boundary effects by excluding border
cones from the analysis. To identify border cones, a
Voronoi analysis was performed for each ROI with
each set of cone identifications and cones that did
not have a complete Voronoi area within the image
were excluded from density calculations. Bound cone
densitywas then calculated as the number of coneswith
complete Voronoi areas within the image divided by the
sum of their Voronoi areas, as previously described.39
The two calculated bound cone densities for the ROI
were then compared using Bland-Altman analysis.40

Interobserver Reliability

Two additional experienced graders (grader 2,
R.F.C. and grader 3, G.K.V.) also manually identi-
fied cones in the same 204 ROIs using the same
custom software (MOSAIC; Translational Imaging
Innovations). Again, the graders could adjust image
brightness, contrast, and magnification, were masked
to subject ID and retinal location, and images were
presented in a randomized order. Again, bound cone
density was calculated for each ROI for each grader.

We then compared these graders’ results with
the results from grader 1A, described above. Using
methods previously described,31 we combined the cone
selections from all graders into a master coordinate
list and clustered cone locations for each ROI across
all graders. From this master list, we grouped cone
locations that were located within the mean nearest
coordinate distance plus two SDs of each other. Only
one cone identification per grader was allowed in
a cluster. We then assessed the similarity between
graders’ cone identifications using pairwise compar-
isons and rotating the grader who was considered
ground truth. (For example, first considering grader 1A
as ground truth, and comparing grader 2 to 1A and
grader 3 to 1A. Then, considering grader 2 as ground
truth, and comparing grader 1A to 2 and grader 3 to

2, etc.) We then found the true positives (NTP, ground
truth grader and comparison grader both identified a
cone), false positives (NFP, comparison grader identi-
fied a cone but ground truth grader did not), and false
negatives (NFN, ground truth grader identified a cone
but the comparison grader did not). As before, we
found the true positive rate, false positive rate, and
Dice’s coefficient between graders using Equations 3 to
5 above.

We compared the rates between graders and
the intra-observer rates found from grader 1 using
a repeated measures 1-way analysis of variance
(ANOVA) with significance assessed at P < 0.05. We
then performed post hoc t-tests using pairwise compar-
isons, including a Bonferroni correction to adjust for
multiple comparisons. In addition, we compared the
bound cone densities calculated from each grader’s
cone identifications using interclass correlation coeffi-
cient (ICC) with 95% confidence intervals (CIs).

Automated Cone Identification Using an
Open-Source Convolutional Neural Network

We used the open-source split-detection trained
CNN published in Cunefare et al.27 to automatically
identify cones in the 204 nonconfocal split-detection
CHM images. This CNN was pretrained on nonconfo-
cal split-detection images located from 0.5 to 2.8 mm
from fixation in normal retinas. We then compared
the output of the pretrained CNN (termed normal-
CNN) to grader 1A, using grader 1A as ground
truth. We identified true positives (NTP, both grader
1A and normal-CNN), false positives (NFP, normal-
CNN identified a cone but grader 1A did not), and
false negatives (NFN, grader 1A identified a cone but
normal-CNN did not). We then measured the true
positive rate, the false positive rate, and Dice’s coeffi-
cient using Equations 3 to 5 where NGrader 1A was
used as Nground_truth_set and Nnormal − CNN was used as
Ncomparison_set.

We then retrained the open-source CNN using
the 204 CHM split-detection images and grader 1A
cone locations. We used a leave-one-subject-out cross-
validation approach, as previously published28: we
trained the network on the images from 16 CHM
subjects and used the 17th subject’s images as the
validation set for that training run.We ran 17 rounds of
cross-validation, using each of the 17 subjects’ images
as the validation set one time. We then compared the
true positive and false positive rate and Dice’s coeffi-
cient for the cone identifications made by the CHM-
trained CNN (termed CHM-1A-CNN) in comparison
to grader 1A. For Equations 3 to 5, NGrader 1A was still
used asNground_truth_set butNCHM − 1A − CNN was used as
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Table 1. Patient Demographics

Axial Confocal
Length Number of Images

Patient # Study ID Age Eye (mm) Images Available Genetic Mutation

1 13031 14 OD 22.71 16 No Deletion of exons 3–8
2 13035 22 OS 24.52 13 Yes c.315_318delTCAG
3 13048 26 OD 23.81 9 No c.700A>T; p.Lys234Term

(K234X)
4 13106 31 OD 24.26 15 No IVS7-1 G>Cc.940-1G>T
5 13122 21 OD 24.46 14 No c.808C>T; p.Arg270Stop
6 13125 32 OS 23.33 15 Yes c.1437dupA;

p.Glu480ArgfsX12
7 13131 37 OD 24.99 12 Yes CHM - Met443del2aacAT

hemizygous
8 13159 43 OS 25.23 15 Yes Glu382Stop, GAA>TAA

hemizygous
9 13173 28 OD 23.98 14 No c.757 C>T;

p.Arg253Stop(R253X)
10 13183 37 OD 23.02 15 No c.745delT; p.Ser249LeufsX42
11 13190 22 OD 23.32 7 No deletion of exons 6, 7, and 8
12 13193 12 OD 24.33 12 No deletion involving the whole

CHM gene
13 13195 37 OD 23.41 16 No c.820-2A>G
14 13220 8 OD 21.38 8 No hemizygous c.277A>T

p.Lys93Ter(K93X)
15 13226 39 OD 24.06 5 Yes c.940-2A>T
16 13231 7 OS 22.29 8 Yes CHM Arg267Stop CGA>TGA

hemizygous
17 13232 32 OD 23.96 10 No CHM Gln380Stop

CAA>TAAhemizygous
Average ± SD 26.35 ± 11.18 23.71 ± 0.98 12 ± 3.5

Ncomparison_set.We then used the paired t-test to compare
true and false positive rates and the Dice coefficient for
the normal-CNN and the CHM-1A-CNN, with statis-
tical significance assessed for P < 0.05.

Finally, we retrained the CNN with cone identifi-
cations made by grader 1B, grader 2, and grader 3.
In each case, we ran 17 rounds of training and cross-
validation using the leave-one-subject-out approach.
These experiments are termed CHM-1B-CNN, CHM-
2-CNN, and CHM-3-CNN. We again measured the
true and false positive rates and Dice’s coefficient for
the CNN cone identifications in comparison with the
manual identifications used for training the network.
We then compared the rates found for CHM-1B-CNN,
CHM-2-CNN, and CHM-3-CNNwith the rates found
for CHM-1A-CNN. In addition, we found the true
and false positive rates and Dice’s coefficient from the
CHM-1A-CNN compared to grader 1B as ground
truth and CHM-1B-CNN compared to grader 1A

as ground truth. Again, statistical significance was
assessed by the repeated measures ANOVA, and post
hoc paired t-tests corrected for multiple comparisons.

Results

Seventeen eyes of 17 genetically confirmed patients
with CHM ages 7 to 43 were included in the study
(Table 1). Intragrader agreement was good; grader
1 showed high repeatability when identifying cones
within the 204 ROIs, where repeated grades were
separated by at least 6 months (Fig. 1). The true
positive and false positive rates and Dice coefficient
for grader 1’s two sets of cone identifications were
0.94 ± 0.05, 0.18 ± 0.09, and 0.87 ± 0.06, respectively
(Table 2) when using grader 1A as the ground truth.
Grader 1B, on average, resulted in higher bound cone

Downloaded from tvst.arvojournals.org on 05/03/2021



Cone Identification in Choroideremia TVST | Special Issue | Vol. 9 | No. 2 | Article 40 | 6

Figure 1. Intragrader repeatability for manual cone selections. Grader 1 exhibited high repeatability for identifying cone locations in the
204 ROIs. Green dots show cones that were selected during both the first and second set of manual identifications separated by 6months by
grader 1. Yellow dots show cone locations that were selected during the first set of identifications but not the second. Black dots show cone
locations that were selected during the second set of identifications but not the first. The three images shown are the images corresponding
to the mean and the mean ± 1 SD Dice coefficient for the 204 ROIs in the dataset. I = inferior, S = superior.

Table 2. Intra- and Intergrader Agreement in Manual Cone Identifications

True positive rate False positive rate Dice’s coefficient
Observer Mean (SD) Mean (SD) Mean (SD)

Grader 1A as “ground truth”
Grader 1B 0.94 (0.05) 0.18 (0.09) 0.87 (0.06)
Grader 2 0.88 (0.13) 0.16 (0.09) 0.85 (0.09)
Grader 3 0.88 (0.11) 0.23 (0.11) 0.81 (0.08)
Grader 2 as “ground truth”
Grader 1A 0.84 (0.09) 0.12 (0.13) 0.85 (0.09)
Grader 3 0.86 (0.12) 0.22 (0.15) 0.80 (0.12)
Grader 3 as “ground truth”
Grader 1A 0.77 (0.11) 0.12 (0.11) 0.81 (0.08)
Grader 2 0.78 (0.15) 0.14 (0.12) 0.80 (0.12)

densities than grader 1A, P < 0.0001. The differences
between the two sets of cone densities failed a test for
normality, so the data were log10 transformed before
Bland Altman analysis was performed. Figure 2 shows
grader 1B selections resulted in a higher bound cone
density than grader 1A, with a proportional effect; in
general, the higher the density for a given image, the
greater the difference in density between gradings.

Intergrader agreement was also good; graders 1 to
3 showed high reliability when manually identifying
cones within the 204 ROIs (Fig. 3). TheDice coefficient
was higher between graders 1A and 2 than between
graders 1A and 3, or graders 2 and 3, P < 0.0001
for both (see Table 2). Cone density (Table 3) was not
significantly different between grader 1A and grader
2 (P = 0.167), but identifications made by grader 3
did result in a higher cone density than grader 1A and
grader 2 (P < 0.0001 for both). Cone density was not

significantly different between grader 3 and grader 1B
(P = 0.69). Using the scale described by Cicchetti,41
intergrader agreement for cone density was excellent
(ICC = 0.862, CI = 0.831–0.890; Fig. 4).

The normal-CNN results showed variable success
at automatically identifying cones in images of CHM
(Fig. 5 top row). When using grader 1A as ground
truth, the normal-CNN resulted in aDice coefficient of
0.71 ± 0.21 (Table 4). This is lower than both the intra-
and intergrader Dice measurements, P < 0.0001 for
both. Calculated bound cone density for the normal-
CNNwas significantly lower than manual cone density
measurements, P < 0.0001 (Fig. 6). Retraining the
CNN on the CHM images (CHM-1A-CNN) improved
automated cone identifications (see Fig. 5 bottom row).
The CHM-1A-CNN yielded a higher true positive rate
(0.88± 0.14) in comparison to the true positive rate for
the normal-CNN (0.64 ± 0.26), P < 0.0001 (Fig. 7 and
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Figure 2. Bland Altman plot for repeat measures of log10 bound
cone density arising from grader 1’s repeated cone selections over
the 204 ROIs. The second set of grader 1 cone selection resulted
in higher cone densities, on average, with a proportional effect of
bound density calculated from the first set of cone selections.

Table 3. Mean Cone Density for Each Grader and CNN
Training

Observer Mean (SD) Cone Density cones/mm2

Grader 1A 30,600 (14,200)
Grader 1B 34,000 (16,100)
Grader 2 31,200 (16,300)
Grader 3 34,300 (19,800)
Normal-CNN 18,000 (6,200)
CHM-1A-CNN 30,200 (9,800)
CHM-1B-CNN 33,300 (11,400)
CHM-2-CNN 30,600 (10,700)
CHM-3-CNN 32,900 (9,900)

see Table 4). However, the false negative rate was also
higher (P < 0.0001), resulting in some images showing
an improved Dice coefficient, whereas others showed
a reduced Dice coefficient (see Fig. 7). On average,
the Dice coefficient did increase for CHM-1A-CNN in
comparison to normal-CNN, P < 0.0001 (see Table 4).
As a result of both higher true and false positive rates,
CHM-1A-CNN resulted in higher cone densities for all
204 ROIs in comparison to normal-CNN (see Fig. 6).
There was no statistical difference for the mean cone
density measured by grader 1A and CHM-1A-CNN
(P = 0.26). However, CHM-1A-CNN overestimated
cone density in images with low manual cone density
and underestimated cone density with images of high
manual cone density (see Fig. 6). This resulted from an
increasing false positive rate with decreasing manual
cone density and a decreasing true positive rate with
increasing cone density (Fig. 8).

Similar results were found when using grader 1B,
grader 2, or grader 3 to train the CNN. CHM-1B-
CNN resulted in the highest Dice coefficient (P <

.01; see Table 4). Interestingly, there was no statisti-
cal difference in the Dice coefficient when using grader
1A or grader 1B as the ground truth comparison
to CHM-1B-CNN. For CHM-1A-CNN, there was a
difference in Dice coefficient when using grader 1A as
ground truth versus grader 1B, although this differ-
ence was small (Dice = 0.82 ± 0.10 vs. 0.81 ± 0.10, P
< 0.001; see Table 4). There was no statistical differ-
ence in Dice coefficients between CHM-1A-CNN and
CHM-2-CNN (P > 0.05 after correcting for multiple
comparisons). CHM-3-CNN resulted in a lower Dice
coefficient than CHM-1A-CNN, CHM-1B-CNN, and
CHM-2-CNN (P < 0.001 for all). Although there were
differences in the Dice coefficient, the resultant densi-
ties from CHM-1A-CNN, CHM-1B-CNN, CHM-2-
CNN, and CHM-3-CNN were highly correlated (ICC
= 0.944, CI = 0.931–0.956). Regardless of which
graders’ manual identifications were used for training,
the CHM-trained networks consistently overestimated
cone density in ROIs with lowmanual cone density and
underestimated cone density in ROIs with high manual
cone density (Fig. 9).

Discussion

Understanding the agreement between graders is
important for understanding the confidencewithwhich
cone density measurements are reported in cross-
sectional studies and for helping to determine limita-
tions for being able to measure true changes in cone
density over time, for example, a reduction in cone
density caused by disease progression. Previous studies
have shown that manual intergrader agreement for
cone density measurements was excellent when experi-
enced graders manually or semimanually identified
cones in confocal images of the parafoveal normal
retina.31,42 Excellent agreement in cone density has
also been demonstrated with expert observersmanually
identifying cones in perifoveal normal images acquired
in both the confocal and split-detection AOSLO
imaging modalities.31 This same study found eccen-
tricity and imaging modality had an effect on inter-
grader agreement, with the highest agreement coming
from parafoveal confocal images and with noncon-
focal split-detection yielding higher agreement than
confocal images for perifoveal locations.31 Disease also
seems to play a variable role in intergrader agree-
ment, likely because pathological changes can cause
difficulties in determining what is a cone and images
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Figure 3. Intergrader reliability formanual cone selections.Greendots represent locationswhere all three graders identified a cone.Colored
dots represent locationswhere an individual grader identifieda cone.Coloredx’s represent locationswhere twoof the threegraders identified
a cone, with the color corresponding to the grader who did not identify a cone at that location. Yellow = grader 1A, blue = grader 2, and
magenta= grader 3. The three images shown represent themedian, 25th, and 27th percentiles for the coefficient of variation (CoV) of cone
density calculated from each of the three graders cone identifications. S = superior, N = nasal.

Table 4. Agreement Between CNN Automatic Cone Identifications and Manual Cone Identifications

Ground Truth Comparison CNN True Positive Rate False Positive Rate Dice’s Coefficient

Manual observer Mean (SD) Mean (SD) Mean (SD)
Grader 1A Normal-CNN 0.64 (0.26) 0.08 (0.07) 0.71 (0.21)

CHM-1A-CNN 0.88 (0.14) 0.20 (0.13) 0.82 (0.10)
CHM-1B-CNN 0.92 (0.12) 0.25 (0.14) 0.81 (0.10)

Grader 1B CHM-1A-CNN 0.84 (0.15) 0.13 (0.11) 0.84 (0.10)
CHM-1B-CNN 0.89 (0.13) 0.16 (0.12) 0.85 (0.09)

Grader 2 CHM-2-CNN 0.86 (0.15) 0.20 (0.17) 0.81 (0.12)
Grader 3 CHM-3-CNN 0.82 (0.15) 0.21 (0.18) 0.78 (0.11)

from patients can have a lower image quality than
those from controls. For example, a previous study
found images from Stargardt disease yielded a higher

Figure 4. Cone density measured from graders 2 and 3 versus
cone density measured by grader 1A. The three graders showed
excellent agreement when measuring cone density in CHM (inter-
class correlation coefficient = 0.862). The black line depicts the line
of equivalence.

manual intergrader agreement than images from retini-
tis pigmentosa GTPase regulator (RPGR)-associated
retinopathy.43 Images of achromatopsia have been
shown to have low repeatability and reliability for
manual cone identifications.44 In the present study, we
showed high intra- and intergrader agreement in cone
density measurements in images of CHM.

We also found that manual intragrader agree-
ment was slightly higher than manual inter-grader
agreement. This is to be expected; because manual
cone identifications are subjectively determined, each
grader undertakes cone identification tasks using their
own criteria and biases for selecting cone locations.
Repeated cone selections by grader 1 separated by
a minimum of 6 months showed statistically signif-
icant higher agreement in individual cone identifica-
tions than when comparing cone identifications among
graders. However, this difference was small, showing
that despite the subjective nature of manual cone
identifications, experienced graders showed consis-
tency and agreement in their independent, subjective
evaluations of cone locations. Using the identified
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Figure 5. Automated cone identifications from CNN in comparison to manual cone selections by an experienced grader. Green dots show
cones thatwere identifiedbyboth theCNNandbygrader 1A. Yellowdots showcone locations selectedby grader 1Abut not theCNN.Orange
dots show cone locations that were selected by the CNN but not by grader 1A. Top row: normal-CNN; bottom row: CHM-1A-CNN. The three
images shown are the images corresponding to themean and themean± 1 SDDice coefficient for each CNN training condition. I= inferior,
N = nasal, S = superior, T = temporal.

cone locations to calculate bound cone density showed
density measurements were similar between graders;
bound cone density was not statistically different
between grader 1A and grader 2, although grader 3
calculated densities were slightly higher than both.
However, grader 1B densities were not statistically
different from grader 3, although they were higher than
both grader 1A and grader 2 (see Table 3, Fig. 4). Taken
all together, we believe this to show that cone density
measurements between the graders are similar even
if statistically significant small differences are present,
that each grader’s measurements in the current study
are equally valid, and that cone density can be reliably
measured in images of CHM.

Although repeatable and reliable, manual cone
identifications are tedious to undertake. As a result,
there is high interest in developing automated methods
to replace the manual task of identifying cones.
CNNs have shown promise for automatically identi-
fying cones in AOSLO images of normal retina27
and images from patients with achromatopsia28 and
Stargardts.29 In the present study, we used the open
source split-detection CNN developed by Cunefare
et al.27 and showed that the Dice coefficient for

the CHM-trained split-detection CNN selections in
comparison to manual selections ranged from 0.78 to
0.85 for different graders (see Table 4). This is compa-
rable to results using the same split-detection CNN
retrained for achromatopsia (Dice coefficient, 0.867)28
and for Stargardt’s (Dice coefficient, 0.8797).29 As
with the achromatopsia and Stargardt’s studies, our
study found the CNN performed better once it was
trained on images from CHM in comparison to using
the CNN pretrained on normal images (see Figs. 5–
7). This again is unsurprising; CNN’s are dependent
on the learning they have received through the train-
ing process so it is reasonable to expect a CNN will
perform better on tasks for which it is explicitly trained.
However, it is unclear whether training on disease
phenotype was the sole cause of the observed improve-
ment. There were other differences between our CHM
images and the normative images used for training the
CNN other than the presence or absence of disease.
The split-detection training set from normal controls
included images 0.5 to 2.8 mm from fixation,27 whereas
our CHM training imaging ranged from 0.14 to 2.2
mm, with 95% of the CHM images located within
1.0 mm of fixation. As a result, the CHM training
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Figure 6. (A) Cone density calculations resulting from the CNN (normal-CNN, orange squares; CHM-1A-CNN, yellow squares with black
outline) automated cone identifications versus the cone densities calculated from the first set ofmanual cone identificationsmade by grader
1. The normal-trained network’s cone identifications resulted in lower cone densities than the manual grader. The CHM-trained network
resulted in higher cone densities than the manual grader for low density images, but lower cone densities than the manual grader for high
density images. The CHM-trained network always results in a higher calculated cone density than the normal-trained network. The black line
shows the line of equivalence. (B, C) Automated cone identifications from the normal and CHM-trained CNNs for the same image.Green dots
show cones that were identified by both the CNN and by grader 1A. Yellow dots show cone locations selected by grader 1A but not the CNN.
Orange dots show cone locations that were selected by the CNN but not by grader 1A. B Normal-CNN; C CHM-1A-CNN. The CHM-trained
CNN showed a higher number of true positives and a higher number of false positives compared to the normal-trained network. The ROI
shown in the figure had the mean difference in cone density between the CHM and normal trained networks. I = inferior, T = temporal.

Figure 7. The true positive and false positive rates and Dice coefficients for CHM-1A-CNN in comparison to normal-CNN. The true positive
and false positive rates for cone identifications were higher for CHM-1A-CNN in comparison to normal-CNN. Dice’s coefficient showedmore
variability, with some images yielding a higher Dice coefficient andwhile others yielded a lower Dice coefficient for CHM-1A-CNN in compar-
ison to the normal-CNN. On average, the Dice coefficient increased for CHM-1A-CNN. The black lines show the lines of equivalence.

data showed higher cone densities than the normal-
trained data. Thus, the improvement in the CHM-
trained network may arise in part from the inclusion
of additional retinal eccentricities and the higher cone
densities measured in the training data in addition to
disease state.

A CNN can only be expected to be as good as its
training data. As a result, we would not expect the
output of the CNN to show perfect agreement with
manual results because manual results are not perfectly
repeatable. The fact that the CNN yielded results that
behaved similarly despite being trained using differ-
ent graders’ cone identifications (see Fig. 9) suggests
that the CNN generally learned the same principles for

identifying cones in CHM regardless of which grader
provided the training data. However, CNN automated
cone identifications yielded lower agreement than the
measured manual intra- and intergrader agreement,
and it resulted in cone densities that were different from
the manual graders’ densities (see Fig. 9). As a result,
the present study shows that manual cone identifica-
tions remain superior to the currently available open-
source CNN for automated cone selections in CHM.

Our goal in the present study was not to develop a
CNN for cone identification in CHM, but rather to test
the applicability of an open-source CNN to automat-
ically identify cones in CHM. The distinction is subtle
but important; our results show that the currently
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Figure 8. True positive and false positive rates and Dice coeffi-
cient for the CHM-1A-CNN plotted versus the calculated cone densi-
ties from grader 1A. The false positive rate is higher for ROIs that
have a lower manual cone density. The true positive rate is lower for
ROIs that have a higher manual cone density. The Dice coefficient
depends on both the true positive and false positive rates, resulting
in lower Dice coefficients for high and low manual density ROIs and
higher Dice coefficients for ROIs withmid-rangemanual cone densi-
ties. Green diamonds = true positive rates; yellow diamonds = false
positive rates; and blue diamonds = Dice coefficients.

Figure 9. Training the CNN with images from CHM resulted in
highly correlated cone densities regardless of which manual set of
cone identifications was used for training. CHM-1A-CNN, CHM-1B-
CNN, CHM-2-CNN, and CHM-3-CNN all overestimated cone density
for ROIswith lowmanual densities andunderestimated conedensity
for ROIs with high manual densities. Yellow dots = CHM-1A-CNN;
black dots = CHM-1B-CNN; blue dots = CHM-2-CNN; and magenta
dots = CHM-3-CNN. The black line shows the line of equivalence.

available open-source CNN does not have the same
accuracy for identifying cones in CHM that manual
graders do, but this does not mean that one cannot
be developed. Indeed, we would expect that the open-
source CNN would improve with additional train-
ing resources, irrespective of CHM. Previous studies
have shown CNNs can improve when using multi-
modal information, such as paired confocal and split-
detection images of the same location.28 In addition,
CNNs trained to distinguish rods from cones are

expected to perform better on images containing both
photoreceptor types.45 The open-source CNN towhich
we had access for the present study was limited to
using a single AOSLO imaging modality at a time and
was limited to identifying cone photoreceptors rather
than distinguishing rods from cones.27 In addition
and as already mentioned, the present study included
images from a different range of retinal eccentricities
than the CNN training data. Retinal topography is
expected to change rapidly over the central macula
particularly with regard to the presence and density
of rods relative to cones.46 Inspection of the images
and CNN automated identifications post hoc showed
numerous examples where the network selected rods as
cones in ROIs with low manual cone density. Thus, we
would expect a CNN trained with multimodal images
and capable of distinguishing rods from cones would
improve the agreement between the automated cone
identifications and the manual graders. In addition,
we expect a CNN trained with knowledge of retinal
eccentricity may also improve the automated results.
Including more images in the training set may also
improve CNN performance. Finally, other deep learn-
ing approaches, such as a multidimensional recurrent
neural network, could be explored in future studies.
These efforts are worth pursuing as the advantages of
accurate automated cone selections greatly surpass the
requirements of manual grading. In addition to reduc-
ing the time and operator effort required to obtain
manual measurements, CNNs have the potential to
remove the subjective biases of manual selections and
provide consistent, objective results across images and
subjects.

In summary, identifying cones and measuring cone
density in CHM is repeatable and reliable for manual
graders. CNNs hold promise for accurate cone selec-
tions, although for CHM, and likely many other retinal
diseases, CNNs will need additional improvements
before their accuracy can equal or surpass manual
agreement. This information will be useful as investiga-
tors commence longitudinal studies of disease progres-
sion and treatment intervention in CHM.
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