31 research outputs found

    Reconstructing changes in macrophyte cover in lakes across the northeastern United States based on sedimentary diatom assemblages

    Get PDF
    Abstract Macrophytes are a critical component of lake ecosystems affecting nutrient and contaminant cycling, food web structure, and lake biodiversity. The long-term (decades to centuries) dynamics of macrophyte cover are, however, poorly understood and no quantitative estimates exist for pre-industrial (pre-1850) macrophyte cover in northeastern North America. Using a 215 lake dataset, we tested if surface sediment diatom assemblages significantly differed among lakes that have sparse (<10% cover; group 1), moderate (10-40% cover; group 2) or extensive (>40% cover; group 3) macrophyte cover. Analysis of similarity indicated that the diatom assemblages of these a priori groups of macrophyte cover were significantly different from one another (i.e., difference between: groups 1 and 3, R statistic = 0.31, P < 0.001; groups 1 and 2, R statistic = 0.049, P < 0.01; groups 3 and 2, R statistic = 0.112, P < 0.001). We then developed an inference model for macrophyte cover from lakes classified as sparse or extensive cover (145 lakes) based on the surface sediment diatom assemblages, and applied this model using the top-bottom paleolimnological approach (i.e., comparison of recent sediments to pre-disturbance sediments). We used the second axis of our correspondence analysis, which significantly divided sparse and extensive macrophyte cover sites, as the independent variable in a logistic regression to predict macrophyte cover as either sparse or extensive. Cross validation, using 48 randomly chosen sites that were excluded from model development, indicated that our model accurately predicts macrophyte cover 79% of the time (r 2 = 0.32, P < 0.001). When applied to the top and bottom sediment samples, our model predicted that 12.5% of natural lakes and 22.4% of reservoirs in the dataset have undergone a ! 30% change in macrophyte cover. For the sites with an inferred change in macrophyte cover, the majority of natural lakes (64.3%) increased in cover, while the majority of reservoirs (87.5%) decreased in macrophyte cover. This study demonstrates that surface sediment diatom assemblages from profundal zones differ in lakes based on their macrophyte cover and that diatoms are useful indicators for quantitatively reconstructing changes in macrophyte cover

    Can we detect ecosystem critical transitions and signals of changing resilience from paleo-ecological records?

    Get PDF
    Nonlinear responses to changing external pressures are increasingly studied in real-world ecosystems. However, as many of the changes observed by ecologists extend beyond the monitoring record, the occurrence of critical transitions, where the system is pushed from one equilibrium state to another, remains difficult to detect. Paleo-ecological records thus represent a unique opportunity to expand our temporal perspective to consider regime shifts and critical transitions, and whether such events are the exception rather than the rule. Yet, sediment core records can be affected by their own biases, such as sediment mixing or compression, with unknown consequences for the statistics commonly used to assess regime shifts, resilience, or critical transitions. To address this shortcoming, we developed a protocol to simulate paleolimnological records undergoing regime shifts or critical transitions to alternate states and tested, using both simulated and real core records, how mixing and compression affected our ability to detect past abrupt shifts. The smoothing that is built into paleolimnological data sets apparently interfered with the signal of rolling window indicators, especially autocorrelation. We thus turned to time-varying autoregressions (online dynamic linear models, DLMs; and time-varying autoregressive state-space models, TVARSS) to evaluate the possibility of detecting regime shifts and critical transitions in simulated and real core records. For the real cores, we examined both varved (annually laminated sediments) and non-varved cores, as the former have limited mixing issues. Our results show that state-space models can be used to detect regime shifts and critical transitions in some paleolimnological data, especially when the signal-to-noise ratio is strong. However, if the records are noisy, the online DLM and TVARSS have limitations for detecting critical transitions in sediment records

    The Canadian context for evidence-based conservation and environmental management

    Get PDF
    Canada has strong institutional capacity for science-based decision-making related to natural resource conservation and environmental management. Yet, the concept of using systematic reviews (conducted in accordance with established guidelines) to support evidence-based conservation and environmental management in Canada is in its infancy. Here we discuss the Canadian context for implementing more rigorous evidence-based approaches using systematic reviews. Of particular relevance to Canada is its vast size, broad diversity of ecosystems and heavy economic reliance on natural resources that vary widely in the type and scale of their environmental effects. These factors result in a wide variety of environmental monitoring needs over an extensive area that pose challenges to the scientific community charged with overseeing wise use of the environment. In addition, there are diverse and engaged user groups (e.g., hunters, trappers, fishers, bird watchers, foresters) and indigenous peoples that have constitutional rights to their natural resources. Traditional environmental knowledge is a complementary source of evidence in the Canadian environmental impact assessment process and therefore must be a part of evidence synthesis. Systematic reviews are not intended to replace local field studies, but rather have the opportunity to draw upon a broader suite of evidence that can be interfaced with local perspectives. The existing institutional structures in Canada could easily incorporate systematic reviews into their science advice and decision-making frameworks but to date, there are few examples of where this has occurred. Drawing on the expertise of a growing global collaboration for environmental evidence synthesis, Canadian institutions (federal, provincial and NGO) are poised to more broadly incorporate systematic reviews once their benefits are fully realized and the capacity to undertake such systematic reviews is fully developed. Systematic reviews offer a consolidated view of the available scientific literature on a given question. The results may offer significant value when working with stakeholders and decision makers contributing other sources of information to the question. For example, mechanisms to capture and integrate scientific knowledge with stakeholder and traditional knowledge may benefit from the scientific sources being filtered, interpreted and summarized for discussion. In other cases, wher

    Empirical models for describing recent sedimentation rates in lakes distributed across broad spatial scales

    No full text
    Over the last 20 years there has been a surge of interest in paleolimnology and as a result a large accumulation of lake sedimentation records. This emerging archive has allowed us to develop empirical models to describe which variables explain significant variation in sedimentation rates over the past ∼150 years across large spatial scales. We hypothesized that latitude would be a significant explanatory variable of profundal zone lake sedimentation rates across a temperate to polar gradient. We further hypothesized that along a more longitudinally-constrained dataset (i.e. east coast of North America), latitude would explain a greater proportion of the variance. To test these hypotheses, we collated data from 125 natural, average-sized lakes (with surface area \u3c500 km2) by recording authors’ estimates of sedimentation rates (measured as mm/year) or by digitizing recent sediment profiles and calculating sedimentation rates over the past ∼150 years. We found that, at both scales, latitude was the strongest predictor of lake sedimentation rates (full dataset: r2 = 0.28, P = 0.001, n = 125; east coast dataset: r2 = 0.58, P \u3c 0.001, n = 43). By conducting a multiple linear regression analysis, we found that 70% of the variance in sedimentation rates from the east coast transect was explained by latitude and elevation alone. This latter model is of sufficient strength that it is a robust predictive tool. Given that climate and land-use strongly co-vary with latitude and that both of these factors have previously been shown to influence lake sedimentation rates, it appears that latitude is a surrogate measure for climate and land-use changes. We also show support for land-use as an important variable influencing sedimentation rates by demonstrating large increases in recent versus Holocene accumulation rates. These results indicate that it is possible to make generalizations about sedimentation rates across broad spatial scales with even limited geographic data

    Evaluating community science sampling for microplastics in shore sediments of large river watersheds

    No full text
    A community science project in the Ottawa River Watershed in Canada interacted with an existing volunteer base to collect sediment from 68 locations in the watershed over approximately 750 km. Ninety-one percent of the distributed kits were returned with 42 volunteers taking part in the project. After analysis, particle concentrations were relatively low compared to previous freshwater microplastic sediment research, with contributing factors including (but not limited to) the large size of the watershed, a lower population base compared to other researched freshwater watersheds, the relative size and discharge of the Ottawa River and the large seasonal fluxes experienced in the river basin. Utilising community science for sampling large freshwater watersheds demonstrated its advantages in the research, especially spatially. However, careful consideration to research design and implementation is essential for community science projects examining microplastics in freshwater sediments. Research teams should ensure they are responsible for strict quality assurance and quality control protocols, especially in the laboratory with sample preparation and processing. Nonetheless, community science is potentially an extremely useful approach for researchers to use for microplastic sampling projects over large spatial areas

    Experimental investigation of short-term warming on arsenic flux from contaminated sediments of two well-oxygenated subarctic lakes.

    No full text
    Legacy arsenic (As) contamination from past mining operations remains an environmental concern in lakes of the Yellowknife area (Northwest Territories, Canada) due to its post-depositional mobility in sediment and potential for continued remobilization to surface waters. Warmer temperatures associated with climate change in this subarctic region may impact As internal loading from lake sediments either by a direct effect on sediment porewater diffusion rate or indirect effects on microbial metabolism and sediment redox conditions. This study assessed the influence of warmer temperatures on As diffusion from contaminated sediment of two lakes with contrasting sediment characteristics using an experimental incubation approach. Sediments from Yellowknife Bay (on Great Slave Lake) contained predominately clay and silt with low organic matter (10%) and high As content (1675 μg/g) while sediments of Lower Martin Lake had high organic matter content (~70%) and approximately half the As (822 μg/g). Duplicate sediment batches from each lake were incubated in a temperature-controlled chamber, and overlying water was kept well-oxygenated while As flux from sediment was measured during four weekly temperature treatments (7°C to 21°C, at ~5°C intervals). During the experiment, As diffused from sediment to overlying water in all cores and temperature treatments, with As fluxes ranging from 48-956 μg/m2/day. Arsenic fluxes were greater from Yellowknife Bay sediments, which had higher solid-phase As concentrations, compared to those of Lower Martin Lake. Short-term warming did not stimulate As flux from duplicate cores of either sediment type, in contrast with reported temperature enhancement in other published studies. We conclude that warmer temperatures were insufficient to strongly enhance sediment As diffusion into overlying oxic waters. These observations are relevant for evaluating climate-warming effects on sediment As mobility in subarctic lakes with little or no thermal stratification and a well-oxygenated water column

    Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries

    No full text
    Microplastic pollution is prevalent in the Ottawa River, with all open water samples (n = 62) and sediment samples (n = 10) containing microplastics. The median microplastic concentration of nearshore 100 L water samples was 0.1 fragments per L (ranged between 0.05 and 0.24 fragments per L). The larger volume Manta trawls samples taken in the middle of the Ottawa River had an overall mean concentration of plastics of 1.35 fragments per m3. Plastic concentrations were significantly higher downstream of the wastewater treatment plant (1.99 fragments per m3) compared with upstream of the effluent output (0.71 fragments per m3), suggesting that the effluent plume is a pathway for plastic pollution to the Ottawa River. The mean concentration of microplastic fragments recovered in the sediment samples was 0.22 fragments per g dry weight. The abundance of microplastics in the sediment was not significantly related to the mean particle size or the organic content of the sediment. The most common form of plastic particles found was microfibers. These made up between 70% and 100% of all plastic particles observed, although plastic microbeads and secondary plastic fragments were also recovered

    Historical gold mining increased metal(loid) concentrations in lake sediments from Nova Scotia, Canada

    No full text
    Historical gold mining operations between the 1860s and 1940s have left substantial quantities of arsenic- and mercury-rich tailings near abandoned mines in remote and urban areas of Nova Scotia, Canada. Large amounts of materials from the tailings have entered the surface waters of downstream aquatic ecosystems at concentrations that present a risk to benthos. We used paleolimnological approaches to examine long-term trends in sedimentary metal(loid) concentrations, assess potential sediment toxicity, and determine if geochemical recovery has occurred at four lakes located downstream of three productive gold-mining districts. During the historical mining era, sedimentary total arsenic and mercury concentrations and enrichment factors increased substantially at all downstream lakes that received inputs from tailings. Similarly, chromium, lead, and zinc concentrations increased in the sediments after mining activities began and the urbanization that followed. The calculated probable effects of concentration quotients (PEC-Qs) for sediments exceeded the probable biological effects threshold (PEC-Q > 2) during the mining era. Although sedimentary metal(loid) concentrations have decreased for most elements in recent sediments, relatively higher PEC-Q and continued exceedance of Canadian Interim Sediment Quality Guidelines suggest that complete geochemical recovery has not occurred. It is likely that surface runoff from tailing fields, urbanization, and climate-mediated changes are impacting geochemical recovery trajectories

    Dung analysis of the East Milford mastodons: dietary and environmental reconstructions from central Nova Scotia at ~75 ka yr BP.

    No full text
    To reconstruct a mastodon diet and provide a ‘snapshot’ view of environmental conditions in eastern Canada prior to the onset of the Wisconsinan glaciation, we analysed the faunal and floral components of dung associated with juvenile mastodon remains from East Milford, Nova Scotia, dated to 74.9 5.0 ka cal BP. The diverse assemblage of pollen, non-pollen palynomorphs, plant macrofossils and macroinvertebrate remains in the dung suggests that the mastodons lived in a spruce-dominated mixed coniferous-deciduous forest with a strong boreal aspect interspersed with wetlands rich in charophytes, sedges, cattails, bulrushes and bryophytes. The abundance of spruce needles and birch samaras in the dung sample is consistent with an inferred browsing behaviour, having been reported for other mammutid species previously. The limited diversity and near-absence of coprophilous fungi, such as Sporormiella, in the dung could have an impact on understanding the influence of feeding strategies on the presence of coprophilous taxa in sedimentary records, and thus interpretations of megafaunal abundance. The dung also yielded the earliest known Canadian remains of the bark beetle Polygraphus cf. rufipennis, gemmulae of the freshwater sponge Eunapius cf. fragilis and loricae of the rotifer Keratella cochlearis.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Extrinsic vs. Intrinsic Regimes Shifts in Shallow Lakes: Long-Term Response of Cyanobacterial Blooms to Historical Catchment Phosphorus Loading and Climate Warming

    Get PDF
    To evaluate the relative influence of intrinsic and extrinsic factors on ecosystem dynamics and regime shifts, we examined the algal response to historical catchment phosphorus loading from two shallow lakes located in Quebec, Canada. Roxton Pond is a eutrophic shallow lake with submerged macrophytes, and Lake Petit Saint-François (PSF) is a hypereutrophic shallow lake with no submerged macrophytes. Specifically, we inferred past cyanobacteria dynamics using pigment analyses, and tested whether the most parsimonious response model for cyanobacteria dynamics was congruent with the response model for phosphorus loading to the catchment. For both lakes, we found that an abrupt increase in cyanobacteria concentration lagged behind the initial increases in agricultural phosphorus use in the catchment as well as climate warming by over a decade. The delayed cyanobacterial response to these external drivers, observed in both lakes, suggests that intrinsic factors more than likely played important roles in ecosystem dynamics. These results show that cyanobacteria dominance in shallow lakes can be brought on by intrinsic responses to catchment phosphorus loading, climate warming, or both, but the timing depends on the antecedent conditions and the magnitude of the external forcing
    corecore