737 research outputs found

    The Cardiac Ion Channels

    Get PDF

    Navier-Stokes computations for circulation control airfoils

    Get PDF
    Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows

    Kondo physics in tunable semiconductor nanowire quantum dots

    Full text link
    We have observed the Kondo effect in strongly coupled semiconducting nanowire quantum dots. The devices are made from indium arsenide nanowires, grown by molecular beam epitaxy, and contacted by titanium leads. The device transparency can be tuned by changing the potential on a gate electrode, and for increasing transparencies the effects dominating the transport changes from Coulomb Blockade to Universal Conductance Fluctuations with Kondo physics appearing in the intermediate region.Comment: 4 pages, 4 figure

    Accuracy, Scalability, and Efficiency of Mixed-Element USM3D for Benchmark Three-Dimensional Flows

    Get PDF
    The unstructured, mixed-element, cell-centered, finite-volume flow solver USM3D is enhanced with new capabilities including parallelization, line generation for general unstructured grids, improved discretization scheme, and optimized iterative solver. The paper reports on the new developments to the flow solver and assesses the accuracy, scalability, and efficiency. The USM3D assessments are conducted using a baseline method and the recent hierarchical adaptive nonlinear iteration method framework. Two benchmark turbulent flows, namely, a subsonic separated flow around a three-dimensional hemisphere-cylinder configuration and a transonic flow around the ONERA M6 wing are considered

    Shadow epitaxy for in-situ growth of generic semiconductor/superconductor devices

    Full text link
    Uniform, defect-free crystal interfaces and surfaces are crucial ingredients for realizing high-performance nanoscale devices. A pertinent example is that advances in gate-tunable and topological superconductivity using semiconductor/superconductor electronic devices are currently built on the hard proximity-induced superconducting gap obtained from epitaxial indium arsenide/aluminium heterostructures. Fabrication of devices requires selective etch processes; these exist only for InAs/Al hybrids, precluding the use of other, potentially superior material combinations. We present a crystal growth platform -- based on three-dimensional structuring of growth substrates -- which enables synthesis of semiconductor nanowire hybrids with in-situ patterned superconductor shells. This platform eliminates the need for etching, thereby enabling full freedom in choice of hybrid constituents. We realise and characterise all the most frequently used architectures in superconducting hybrid devices, finding increased yield and electrostatic stability compared to etched devices, along with evidence of ballistic superconductivity. In addition to aluminium, we present hybrid devices based on tantalum, niobium and vanadium. This is the submitted version of the manuscript. The accepted, peer reviewed version is available from Advanced Materials: http://doi.org/10.1002/adma.201908411 Previous title: Shadow lithography for in-situ growth of generic semiconductor/superconductor device

    Electrophysiologic effects of the IK1 inhibitor PA-6 are modulated by extracellular potassium in isolated guinea pig hearts

    Get PDF
    The pentamidine analog PA‐6 was developed as a specific inward rectifier potassium current (I(K) (1)) antagonist, because established inhibitors either lack specificity or have side effects that prohibit their use in vivo. We previously demonstrated that BaCl(2), an established I(K) (1) inhibitor, could prolong action potential duration (APD) and increase cardiac conduction velocity (CV). However, few studies have addressed whether targeted I(K) (1) inhibition similarly affects ventricular electrophysiology. The aim of this study was to determine the effects of PA‐6 on cardiac repolarization and conduction in Langendorff‐perfused guinea pig hearts. PA‐6 (200 nm) or vehicle was perfused into ex‐vivo guinea pig hearts for 60 min. Hearts were optically mapped with di‐4‐ANEPPS to quantify CV and APD at 90% repolarization (APD (90)). Ventricular APD (90) was significantly prolonged in hearts treated with PA‐6 (115 ± 2% of baseline; P < 0.05), but not vehicle (105 ± 2% of baseline). PA‐6 slightly, but significantly, increased transverse CV by 7%. PA‐6 significantly prolonged APD (90) during hypokalemia (2 mmol/L [K+](o)), although to a lesser degree than observed at 4.56 mmol/L [K+](o). In contrast, the effect of PA‐6 on CV was more pronounced during hypokalemia, where transverse CV with PA‐6 (24 ± 2 cm/sec) was significantly faster than with vehicle (13 ± 3 cm/sec, P < 0.05). These results show that under normokalemic conditions, PA‐6 significantly prolonged APD (90), whereas its effect on CV was modest. During hypokalemia, PA‐6 prolonged APD (90) to a lesser degree, but profoundly increased CV. Thus, in intact guinea pig hearts, the electrophysiologic effects of the I(K) (1) inhibitor, PA‐6, are [K+](o)‐dependent

    OVERFLOW Turbulence Modeling Resource Validation Results

    Get PDF
    Abstract:We exercise the computational fluid dynamics code OVERFLOW on sixteen turbulence model validation cases from the NASALangley Turbulence Model Resource web site. We give some information about the OVERFLOW options used to run these cases, and compare OVERFLOW results with results from other codes and with experiment. The goal is turbulence model validation for OVERFLOW

    Engineering Hybrid Epitaxial InAsSb/Al Nanowire Materials for Stronger Topological Protection

    Get PDF
    The combination of strong spin-orbit coupling, large gg-factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxial InAsSb/Al nanowires, with varying composition and crystal structure. We find the strongest spin-orbit interaction at intermediate compositions in zincblende InAs1x_{1-x}Sbx_{x} nanowires, exceeding that of both InAs and InSb materials, confirming recent theoretical studies \cite{winkler2016topological}. We show that the epitaxial InAsSb/Al interfaces allows for a hard induced superconducting gap and 2ee transport in Coulomb charging experiments, similar to experiments on InAs/Al and InSb/Al materials, and find measurements consistent with topological phase transitions at low magnetic fields due to large effective gg-factors. Finally we present a method to grow pure wurtzite InAsSb nanowires which are predicted to exhibit even stronger spin-orbit coupling than the zincblende structure.Comment: 10 pages and 5 figure
    corecore