3 research outputs found

    Resistance and change in a High Arctic ecosystem, NW Greenland:differential sensitivity of ecosystem metrics to 15 years of experimental warming and wetting

    No full text
    Abstract Dramatic increases in air temperature and precipitation are occurring in the High Arctic (>70 °N), yet few studies have characterized the long-term responses of High Arctic ecosystems to the interactive effects of experimental warming and increased rain. Beginning in 2003, we applied a factorial summer warming and wetting experiment to a polar semidesert in northwest Greenland. In summer 2018, we assessed several metrics of ecosystem structure and function, including plant cover, greenness, ecosystem CO₂ exchange, aboveground (leaf, stem) and belowground (litter, root, soil) carbon (C) and nitrogen (N) concentrations (%) and pools, as well as leaf and soil stable isotopes (δ¹³C and δ¹⁵N). Wetting induced the most pronounced changes in ecosystem structure, accelerating the expansion of S. arctica cover by 370% and increasing aboveground C, N, and biomass pools by 94–101% and root C, N, and biomass pools by 60–122%, increases which coincided with enhanced net ecosystem CO₂ uptake. Further, wetting combined with warming enhanced plot-level greenness, whereas in isolation neither wetting nor warming had an effect. At the plant level the effects of warming and wetting differed among species and included warming-linked decreases in leaf N and δ¹⁵N in Salix arctica, whereas leaf N and δ¹⁵N in Dryas integrifolia did not respond to the climate treatments. Finally, neither plant- nor plot-level C and N allocation patterns nor soil C, N, δ¹³C, or δ¹⁵N concentrations changed in response to our manipulations, indicating that these ecosystem metrics may resist climate change, even in the longer term. In sum, our results highlight the importance of summer precipitation in regulating ecosystem structure and function in arid parts of the High Arctic, but they do not completely refute previous findings of resistance in some High Arctic ecosystem properties to climate change

    NDVI changes in the Arctic:functional significance in the moist acidic tundra of Northern Alaska

    No full text
    Abstract The Normalized Difference Vegetation Index (NDVI), derived from reflected visible and infrared radiation, has been critical to understanding change across the Arctic, but relatively few ground truthing efforts have directly linked NDVI to structural and functional properties of Arctic tundra ecosystems. To improve the interpretation of changing NDVI within moist acidic tundra (MAT), a common Arctic ecosystem, we coupled measurements of NDVI, vegetation structure, and CO₂ flux in seventy MAT plots, chosen to represent the full range of typical MAT vegetation conditions, over two growing seasons. Light-saturated photosynthesis, ecosystem respiration, and net ecosystem CO₂ exchange were well predicted by NDVI, but not by vertically-projected leaf area, our nondestructive proxy for leaf area index (LAI). Further, our data indicate that NDVI in this ecosystem is driven primarily by the biochemical properties of the canopy leaves of the dominant plant functional types, rather than purely the amount of leaf area; NDVI was more strongly correlated with top cover and repeated cover of deciduous shrubs than other plant functional types, a finding supported by our data from separate “monotypic” plots. In these pure stands of a plant functional type, deciduous shrubs exhibited higher NDVI than any other plant functional type. Likewise, leaves from the two most common deciduous shrubs, Betula nana and Salix pulchra, exhibited higher leaf-level NDVI than those from the codominant graminoid, Eriophorum vaginatum. Our findings suggest that recent increases in NDVI in MAT in the North American Arctic are largely driven by expanding deciduous shrub canopies, with substantial implications for MAT ecosystem function, especially net carbon uptake

    Winters are changing:snow effects on Arctic and alpine tundra ecosystems

    No full text
    Abstract Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season’s start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover’s role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates
    corecore