1 research outputs found
On the Number of Maximal Independent Sets in a Graph
We show that the number of maximal independent sets of size exactly k in any graph of size n is at most [ n/k ]^{k-(n mod k)} ([ n/k ] +1)^{n mod k}. For maximal independent sets of size at most k the same bound holds for k n/3 a bound of approximately 3^{n/3} is given. All the bounds are exactly tight and improve Eppstein (2001) who give the bound 3^{4k-n}4^{n-3k} on the number of maximal independent sets of size at most k, which is the same for n/