103 research outputs found

    Ferromagnetic ordering of linearly coordinated Co ions in LiSr2_2[CoN2_2]

    Get PDF
    LiSr2_2[CoN2_2] single crystals were successfully grown out of Li-rich flux. Temperature- and field-dependent measurements of the magnetization in the range of T=2300T = 2 - 300 K and up to μ0H=7\mu_{0}\textit{H} = 7 T as well as measurements of the heat capacity are presented. Ferromagnetic ordering emerges below TC=44T_C = 44 K and comparatively large coercivity fields of μ0H=0.3\mu_0H = 0.3 T as well as pronounced anisotropy are observed upon cooling. Polycrystalline samples of the Ca analog LiCa2_2[CoN2_2] were obtained and investigated in a similar way. In both compounds Co manifests orbital contributions to the magnetic moment and large single-ion anisotropy that is caused by second-order Spin-orbit coupling. Quantum chemistry calculations reveal a magnetic anisotropy energy of 7 meV, twice as large as the values reported for similar Co d8d^{8} systems.Comment: 21 pages, 6 figures, 5 table

    Alternating magnetic anisotropy of Li2_2(Li1xTx_{1-x}T_x)N with TT = Mn, Fe, Co, and Ni

    Get PDF
    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2_2(Li1xTx_{1-x}T_x)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy-plane \rightarrow easy-axis \rightarrow easy-plane \rightarrow easy-axis when progressing from TT = Mn \rightarrow Fe \rightarrow Co \rightarrow Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model. The calculated magnetic anisotropies show a surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.Comment: 5 pages, 3 figures, published as PRB Rapid Communication, Fig. 3 update

    Optical signature of the pressure-induced dimerization in the honeycomb iridate α\alpha-Li2_2IrO3_3

    Get PDF
    We studied the effect of external pressure on the electrodynamic properties of α\alpha-Li2_2IrO3_3 single crystals in the frequency range of the phonon modes and the Ir dd-dd transitions. The abrupt hardening of several phonon modes under pressure supports the onset of the dimerized phase at the critical pressure PcP_c=3.8 GPa. With increasing pressure an overall decrease in spectral weight of the Ir dd-dd transitions is found up to PcP_c. Above PcP_c, the local (on-site) dd-dd excitations gain spectral weight with increasing pressure, which hints at a pressure-induced increase in the octahedral distortions. The non-local (intersite) Ir dd-dd transitions show a monotonic blue-shift and decrease in spectral weight. The changes observed for the non-local excitations are most prominent well above PcP_c, namely for pressures \geq12 GPa, and only small changes occur for pressures close to PcP_c. The profile of the optical conductivity at high pressures (\sim20 GPa) appears to be indicative for the dimerized state in iridates.Comment: 10 pages, 6 figures; accepted for publication in Phys. Rev.

    High-pressure versus isoelectronic doping effect on the honeycomb iridate Na2_2IrO3_3

    Get PDF
    We study the effect of isoelectronic doping and external pressure in tuning the ground state of the honeycomb iridate Na2_2IrO3_3 by combining optical spectroscopy with synchrotron x-ray diffraction measurements on single crystals. The obtained optical conductivity of Na2_2IrO3_3 is discussed in terms of a Mott insulating picture versus the formation of quasimolecular orbitals and in terms of Kitaev-interactions. With increasing Li content xx, (Na1x_{1-x}Lix_x)2_2IrO3_3 moves deeper into the Mott insulating regime and there are indications that up to a doping level of 24\% the compound comes closer to the Kitaev-limit. The optical conductivity spectrum of single crystalline α\alpha-Li2_2IrO3_3 does not follow the trends observed for the series up to x=0.24x=0.24. There are strong indications that α\alpha-Li2_2IrO3_3 is less close to the Kitaev-limit compared to Na2_2IrO3_3 and closer to the quasimolecular orbital picture. Except for the pressure-induced hardening of the phonon modes, the optical properties of Na2_2IrO3_3 seem to be robust against external pressure. Possible explanations of the unexpected evolution of the optical conductivity with isolectronic doping and the drastic change between x=0.24x=0.24 and x=1x=1 are given by comparing the pressure-induced changes of lattice parameters and the optical conductivity with the corresponding changes induced by doping.Comment: 12 pages, 6 figures, accepted for publication in Phys. Rev.

    Single crystal growth and anisotropic magnetic properties of Li2Sr[Li1 − xFexN]2

    Get PDF
    Up to now, investigation of physical properties of ternary and higher nitridometalates was severely hampered by challenges concerning phase purity and crystal size. Employing a modified lithium flux technique, we are now able to prepare sufficiently large single crystals of the highly air and moisture sensitive nitridoferrate Li2Sr[Li1xFexN]2\rm Li_2Sr[Li_{1-x}Fe_xN]_2 for anisotropic magnetization measurements. The magnetic properties are most remarkable: large anisotropy and coercivity fields of 7 Tesla at T=2T = 2 K indicate a significant orbital contribution to the magnetic moment of iron. Altogether, the novel growth method opens a route towards interesting phases in the comparatively recent research field of nitridometalates and should be applicable to various other materials.Comment: 10 pages, 5 figures, published open access in Inorganics, minor typos correcte

    Avoided ferromagnetic quantum critical point: Unusual short-range ordered state in CeFePO

    Get PDF
    Cerium 4f electronic spin dynamics in single crystals of the heavy-fermion system CeFePO is studied by means of ac-susceptibility, specific heat and muon-spin relaxation (μ\muSR). Short-range static magnetism occurs below the freezing temperature Tg ~ 0.7 K, which prevents the system from accessing the putative ferromagnetic quantum critical point. In the μ\muSR, the sample-averaged muon asymmetry function is dominated by strongly inhomogeneous spin fluctuations below 10 K and exhibits a characteristic time-field scaling relation expected from glassy spin dynamics, strongly evidencing cooperative and critical spin fluctuations. The overall behavior can be ascribed neither to canonical spin glasses nor other disorder-driven mechanisms.Comment: 5 pages, 4 figures, accepted for publication in Physical Review Letters, Link: http://prl.aps.org/accepted/6207bYdaGef1483c419928305372ce2d4419eb96

    Structure and giant magnetoresistance of granular Co-Cu nanolayers prepared by cross-beam PLD

    Get PDF
    A series of Co_xCu_{100-x} (x = 0, 40...75, 100) layers with thicknesses in-between 13 nm and 55 nm were prepared on silicon substrates using cross-beam pulsed laser deposition. Wide-angle X-ray diffraction (WAXRD), transmission electron microscopy (TEM) and electrical transport measurements revealed a structure consisting of decomposed cobalt and copper grains with grain sizes of about 10 nm. The influence of cobalt content and layer thickness on the grain size is discussed. Electron diffraction (ED) indicates the presence of an intermetallic Co-Cu phase of Cu3Au structure-type. Thermal treatment at temperatures between 525 K and 750 K results in the progressive decomposition of Co and Cu, with an increase of the grain sizes up to about 100 nm. This is tunable by controlling the temperature and duration of the anneal, and is directly observable in WAXRD patterns and TEM images. A careful analysis of grain size and the coherence length of the radiation used allows for an accurate interpretation of the X-ray diffraction patterns, by taking into account coherent and non-coherent scattering. The alloy films show a giant magnetoresistance of 1...2.3 % with the maximum obtained after annealing at around 725 K.Comment: 9 pages, 9 figure

    Ferromagnetism and superconductivity in P-doped CeFeAsO

    Get PDF
    We report on superconductivity in CeFeAs1-xPxO and the possible coexistence with Ce- ferromagnetism (FM) in a small homogeneity range around x = 30% with ordering temperatures of T_SC = T_C = 4K. The antiferromagnetic (AFM) ordering temperature of Fe at this critical concentration is suppressed to T^N_Fe ~ 40K and does not shift to lower temperatures with further increase of the P concentration. Therefore, a quantum-critical-point scenario with T^N_Fe -> 0K which is widely discussed for the iron based superconductors can be excluded for this alloy series. Surprisingly, thermal expansion and X-ray powder diffraction indicate the absence of an orthorhombic distortion despite clear evidence for short range AFM Fe-ordering from muon-spin-rotation measurements. Furthermore, we discovered the formation of a sharp electron spin resonance signal unambiguously connected with the emergence of FM ordering.Comment: 5 pages, 4 figures, published in Phys. Rev. B (Rapid Communication, Editors suggestion

    Persistence of local-moment antiferromagnetic order in Ba(1-x)KxMn2As2

    Get PDF
    BaMn2As2 is a local-moment antiferromagnetic insulator with a N\'eel temperature of 625 K and a large ordered moment of 3.9 Bohr magneton per Mn. Remarkably, this compound can be driven metallic by the substitution of as little as 1.6% K for Ba while retaining essentially the same ordered magnetic moment and N\'eel temperature, as previously reported. Here, using both powder and single crystal neutron diffraction we show that the local moment antiferromagnetic order in Ba(1-x)KxMn2As2 remains robust up to x = 0.4. The ordered moment is nearly independent of x for 0 < x < 0.4 and the N\'eel transition temperature decreases to 480 K at x = 0.4.Comment: 5 pages, 5 figure

    Antiferroelectricity Driven by Cluster Jahn-Teller Effect in the Lacunar Spinel GaNb4_4S8_8

    Get PDF
    We report the observation of an antiferroelectric (AFE) transition in cubic GaNb4_4S8_8 driven by an unconventional microscopic mechanism, the Jahn-Teller effect of Nb4_4S4_4 clusters. At TJT_\mathrm{JT} = 31 K, we observed a strong drop of the dielectric constant, a clear signature of frst-order AFE transitions. The frst-order character is also verifed by specifc heat and magnetic susceptibility measurements. Below TJT_\mathrm{JT}, the combination of single-crystal and high-resolution powder X-ray dffraction revealed a violation of the previously reported space-group P4ˉ21mP\bar{4}21m, in favor of a lower-symmetric distortionpattern of the Nb4_4S4_4 clusters. In addition, weak ferroelectric polarization was found below TJT_\mathrm{JT}, likely emerging due to the presence of polar domain walls within the otherwise AFE bulk structure
    corecore