284 research outputs found

    Hydrogels in regenerative medicine and other biomedical applications

    Get PDF
    [Excerpt] It is my great pleasure to be part of this Special Issue in the International Journal of Molecular Sciences—“Hydrogels in Regenerative Medicine and Other Biomedical Applications”. Hydrogels are made up of three-dimensional matrices of hydrophilic polymers, which are held together by chemical or physical crosslinks or by supramolecular assemblies of smaller amphiphilic molecules

    Synthesis of a Versatile Building Block for the Preparation of 6-N-Derivatized α-Galactosyl Ceramides: Rapid Access to Biologically Active Glycolipids

    Get PDF
    A concise route to the 6-azido-6-deoxy-α-galactosyl-phytosphingosine derivative 9 is reported. Orthogonal protection of the two amino groups allows elaboration of 9 into a range of 6-N-derivatized α-galactosyl ceramides by late-stage introduction of the acyl chain of the ceramide and the 6-N-group in the sugar head-group. Biologically active glycolipids 6 and 8 have been synthesized to illustrate the applicability of the approach

    Analysis of Poisson count time series with unknown periodicity

    Get PDF
    See full text for abstractEThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    Synthesis of a versatile building block for the preparation of 6-N-derivatized α-galactosyl ceramides: rapid access to biologically active glycolipids.

    Get PDF
    [Image: see text] A concise route to the 6-azido-6-deoxy-α-galactosyl-phytosphingosine derivative 9 is reported. Orthogonal protection of the two amino groups allows elaboration of 9 into a range of 6-N-derivatized α-galactosyl ceramides by late-stage introduction of the acyl chain of the ceramide and the 6-N-group in the sugar headgroup. Biologically active glycolipids 6 and 8 have been synthesized to illustrate the applicability of the approach

    Dehydropeptide supramolecular hydrogels and nanostructures as potential peptidomimetic biomedical materials

    Get PDF
    Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, ÎČ-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also introduces a conformational restraint to the peptide backbone, resulting in (often predictable) changes to the secondary structure of the peptide. This review focuses on peptide hydrogels and related nanostructures, where α,ÎČ-didehydro-α-amino acids have been successfully incorporated into the structure of peptide hydrogelators, and the resulting properties are discussed in terms of their potential biomedical applications. Where appropriate, their properties are compared with those of the corresponding peptide hydrogelator composed of canonical amino acids. In a wider context, we consider the presence of dehydroamino acids in natural compounds and medicinally important compounds as well as their limitations, and we consider some of the synthetic strategies for obtaining dehydropeptides. Finally, we consider the future direction for this research area.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CQUM (UID/QUI/00686/2019). FCT, FEDER, PORTUGAL2020 and COMPETE2020 are also acknowledged for funding under research project PTDC/QUI-QOR/29015/2017 (POCI-01-0145-FEDER-029015)

    Peptide-based supramolecular hydrogels as drug delivery agents: recent advances

    Get PDF
    Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018–present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CQUM (UID/QUI/00686/2019). FCT, FEDER, PORTUGAL2020 and COMPETE2020 are also acknowledged for funding under research project PTDC/QUI-QOR/29015/2017 (POCI-01-0145-FEDER-029015)

    Hydrogels and nanostructures formed from ciprofloxacin–peptide conjugates

    Get PDF
    Ciprofloxacin is a broad-spectrum fluoroquinolone antibiotic that possesses potent activity against both Gram-positive and Gram-negative bacteria and is used to treat many infections. Despite its widespread use, ciprofloxacin is associated with side effects, which might be reduced by improving its pharmacokinetic properties. The chemical structure of ciprofloxacin is the source of some of its limitations, which include: (1) Poor membrane permeability due to lipophobicity caused by the presence of polar groups; and (2) poor transportation and absorption due to poor water solubility caused by the flat aromatic structure. Previous methods for improving the pharmacokinetic properties of ciprofloxacin have involved the synthesis of conjugates. Issues related to poor membrane permeability, transportation and absorption of drugs can also be improved by employing nanocarriers and nanomaterials. Encapsulation within nanocarriers allows targeted drug delivery and reduced side effects as lower doses of the drug can be administered. Nanocarriers that can be used for this purpose include nanoparticles and hydrogels. Our research group is interested in supramolecular hydrogels as drug delivery systems. Short amphiphilic peptides are often able to form hydrogels through self-assembly. This present work describes the synthesis of a ciprofloxacin–dehydropeptide conjugate with the aim of forming hydrogels and related nanostructures to be used for the ‘self-delivery’ of antibacterial compounds. We assessed the hydrogelation ability, antibacterial activity, and pharmacokinetic properties. TEM microscopy revealed nanotubes and nanospheres. The conjugate was unable to form hydrogels alone but was able to form hydrogels as the major component of a co-gel with another peptide gelator. Although the conjugate retained antibacterial activity at 400 ”M, activity diminished at lower concentrations. Thus, future work should focus on more hydrolysable pro-drug versions of the conjugate or versions where the peptide is connected at an alternate position.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CQUM (UID/QUI/00686/2019). FCT, FEDER, PORTUGAL2020, and COMPETE2020 are also acknowledged for funding under research project PTDC/QUI-QOR/29015/2017 (POCI-01-0145-FEDER-029015)

    Evaluation of a model photo-caged dehydropeptide as a stimuli-responsive supramolecular hydrogel

    Get PDF
    Short peptides capped on the N-terminus with aromatic groups are often able to form supramolecular hydrogels, via self-assembly, in aqueous media. The rheological properties of these readily tunable hydrogels resemble those of the extracellular matrix (ECM) and therefore have potential for various biological applications, such as tissue engineering, biosensors, 3D bioprinting, drug delivery systems and wound dressings. We herein report a new photo-responsive supramolecular hydrogel based on a “caged” dehydropeptide (CNB-Phe-ΔPhe-OH 2), containing a photo-cleavable carboxy-2-nitrobenzyl (CNB) group. We have characterized this hydrogel using a range of techniques. Irradiation with UV light cleaves the pendant aromatic capping group, to liberate the corresponding uncaged model dehydropeptide (H-Phe-ΔPhe-OH 3), a process which was investigated by 1H NMR and HPLC studies. Crucially, this cleavage of the capping group is accompanied by dissolution of the hydrogel (studied visually and by fluorescence spectroscopy), as the delicate balance of intramolecular interactions within the hydrogel structure is disrupted. Hydrogels which can be disassembled non-invasively with temporal and spatial control have great potential for specialized on-demand drug release systems, wound dressing materials and various topical treatments. Both 2 and 3 were found to be non-cytotoxic to the human keratinocyte cell line, HaCaT. The UV-responsive hydrogel system reported here is complementary to previously reported related UV-responsive systems, which are generally composed of peptides formed from canonical amino acids, which are susceptible to enzymatic proteolysis in vivo. This system is based on a dehydrodipeptide structure which is known to confer proteolytic resistance. We have investigated the ability of the photo-activated system to accelerate the release of the antibiotic, ciprofloxacin, as well as some other small model drug compounds. We have also conducted some initial studies towards skin-related applications. Moreover, this model system could potentially be adapted for on-demand “self-delivery”, through the uncaging of known biologically active dehydrodipeptides.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CQUM (UID/QUI/00686/2019) and of IPC (UID/CTM/50025/2019). L.H. acknowledges funding from the FCT Investigator Programme through grant IF/00606/2014. FCT, FEDER, PORTUGAL2020 and COMPETE2020 are also acknowledged for funding under research project PTDC/QUI-QOR/29015/2017 (POCI-01-0145-FEDER-029015)

    Fisetin derivatives exhibit enhanced anti-inflammatory activity and modulation of endoplasmic reticulum stress

    Get PDF
    Fisetin (FST) is a dietary flavonol that is known to possess multiple relevant bioactivities, raising the question of its potential health benefits and even its use in novel pharmacological approaches. To attain this prospect, some limitations to this molecule, namely its poor bioavailability and solubility, must be addressed. Inflammation and endoplasmic reticulum (ER) stress are often hand in hand in the context of chronic disease. Both are activated upon perceived disturbances in homeostasis but can be deleterious when intensely or chronically activated. We have synthesized a set of FST derivatives trying to improve the biological properties of the parent molecule. These new molecules were tested along with the original compound for their ability to mitigate the activation of these signaling pathways. FST has proven to be effective against the onset of inflammation, reducing NF-ÎșB activation, cytokine release, inflammasome activation and ROS generation, as well as decreasing the activation of the unfolded protein response (UPR). Some of the tested derivatives are also described as new caspase-1 inhibitors, being also capable of reducing pro-inflammatory cytokines and ER stress markers.(undefined
    • 

    corecore