
ANALYSIS OF POISSON COUNT TIME

SERIES WITH UNKNOWN

PERIODICITY

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2011

Sarah Jervis

School of Mathematics



Contents

Abstract 7

Declaration 8

Copyright Statement 9

Acknowledgements 10

1 Introduction 11

1.1 Periodic Poisson count data . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 A review of time series analysis . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 The ARMA model . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Models for non-homogeneous Poisson processes . . . . . . . . 19

1.3 The basic model with trigonometric latent process . . . . . . . . . . . 20

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Methods for estimating ω directly from the data 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 The nonlinear model . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 ω as a pattern in data plots . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Estimating ω from Zeger's latent ACF estimator . . . . . . . . . . . . 33

2.4.1 The periodicity of an unbiased estimator . . . . . . . . . . . . 33

2.4.2 Zeger's covariance estimator under a GLM mean . . . . . . . . 35

3 Asymptotic results for the GLM and DFT estimators 43

2



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Convergence of θ̂GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Normality of θ̂GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Consistency of the latent ACF estimator and its DFT . . . . . . . . . 54

3.5 Extension of results on θ̂GLM to include random-valued regressors . . 62

3.5.1 Consistency of θ̂GLM for the model with random-valued regressors 62

3.5.2 Asymptotic normality of θ̂GLM with random-valued regressors 67

4 Models with two latent processes and their properties 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Adding a second periodic latent process to the model . . . . . . . . . 74

4.3 An ARMA latent process for short-term, non-periodic dependence . . 79

4.4 The strong mixing of a multivariate AR process . . . . . . . . . . . . 80

4.4.1 Rewriting MAR(m, p) processes as MAR(mp, 1) processes . . 81

4.4.2 Mixing for MAR(m, 1) processes . . . . . . . . . . . . . . . . 82

4.4.3 Strong mixing of periodic Poisson regression models with a sec-

ondary AR latent process . . . . . . . . . . . . . . . . . . . . 90

4.5 Extension of results on θ̂GLM for double latent processes . . . . . . . 93

4.5.1 Consistency of θ̂GLM . . . . . . . . . . . . . . . . . . . . . . . 93

4.5.2 Asymptotic normality of θ̂GLM . . . . . . . . . . . . . . . . . 95

4.5.3 Consistency of the ACF estimator for a double latent process

and its DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Analysis of measles case counts in the UK 110

5.1 Introduction and preliminary analysis . . . . . . . . . . . . . . . . . . 110

5.2 Building models for measles case counts in the UK . . . . . . . . . . 115

5.3 Potential extensions of the measles analysis to multivariate data sets

and to other diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography 133

Word count xxxxx

3



List of Tables

2.1 Parameter estimates from four non-linear least-square algorithms . . 26

5.1 Locations of extreme values . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Goodness-of-�t statistics for periodic models . . . . . . . . . . . . . . 118

5.3 Goodness-of-�t statistics for the LOD model with added trigonometric

terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Goodness-of-�t statistics for the three-period LOD model with added

weather statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5 Goodness-of-�t statistics for the three-period LOD model with annual

birth rates, time polynomial and holiday-time indicator . . . . . . . . 124

5.6 Goodness-of-�t statistics for the holiday-indicator LOD model with

the optimal single birth-rate, optimal pair of birth rates and optimal

single time regressor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Parameter estimates and their properties . . . . . . . . . . . . . . . . 126

5.8 Goodness-of-�t statistics for the 3P 7-8-lag LOD model with and with-

out binary indicator, without sin(πt/26), without cos(3πt/13) and

without sin(3πt/13). . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4



List of Figures

1.1 Plot of the number of drivers killed or seriously injured in car accidents,

1969-1984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Averaged sunspot numbers, measured yearly 1700-1988 and monthly

1749-1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Annual Canadian lynx trappings, 1821 to 1934 . . . . . . . . . . . . . 15

2.1 Plots of sums-of-squares for a simulated data set, over a range of in-

tercept, frequency and phase-shift values . . . . . . . . . . . . . . . . 27

2.2 Plots of simulated data sets and their logarithms . . . . . . . . . . . . 31

2.3 Plots of periodograms and di�erenced logarithms of simulated data sets 32

2.4 Line plots and DFTs of covariance estimates from simulated data sets 37

4.1 DFT plots for covariance estimates from simulations with two-period

latent processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Multi-plot of the measles counts in 60 UK cities . . . . . . . . . . . . 112

5.2 Plots of all UK measles counts, including and excluding London . . . 113

5.3 Plots of the standardised yearly birth counts for the UK, the 60 loca-

tions and the 59 locations excluding London . . . . . . . . . . . . . . 117

5.4 Plot of the UK measles counts and the �tted values from �ve simple

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Plots of values 1-130 and 1-40 for the DFT of the covariance function

estimators for the LOD model, calculated up to lag 260 . . . . . . . . 121

5



5.6 Plot of all 23 years of UK measles counts in histogram mode and the

�tted values for the corresponding optimal model . . . . . . . . . . . 129

6



The University of Manchester

Sarah Jervis

Doctor of Philosophy

Analysis of Poisson count time series with unknown periodicity

November 14, 2011

There are well-established methods for estimating and removing seasonality from
a stationary Gaussian time series and in recent years, models for integer-valued, non-
stationary time series, such as count data, have been developed. However, little
research has been done into the analysis of time series which are both non-stationary
integer-valued data sets and display strong periodic behaviour. Sunspot numbers and
case counts of endemic diseases are just two examples of data sets dependent upon
one or more periods of unknown length, illustrating the need for models which can
simultaneously capture non-stationarity and unknown periodicity.
Conditional on a latent process εt, let Y be a T -element time series of counts with
distribution given by

yt|εt ∼ Po
(
exp

(
xTt θ

)
εt
)

where {εt} is an unobserved stationary process. This is known as a serially correlated
error model or latent variable model.
In this thesis, we shall consider the properties of this model in the speci�c case where
{εt} is a series of non-negative trigonometric functions

εt =
k∑
i=1

ai cos
2 (ωit+ ϕi)

where {ωi} are unknown frequencies and {ϕi} are uniform, (0, 2π), random variables.
In Chapter 1, we give examples of count data time series with strong periodicity and
evaluate the unconditional mean and covariance structure of {yt} in the case where
k = 1. In Chapter 2, we study several previously suggested methods for estimating a
single unknown frequency from the data, including least-squares parameter estima-
tion for non-linear models and an autocovariance estimator for the latent process as
mentioned in Zeger (1988). In Chapter 3, we introduce a GLM-based mean param-
eter estimator and a Discrete Fourier transform (DFT) based estimator for ω, then
establish consistency of both and asymptotic normality of the former. In Chapter
4, extensions of the single-period model to cover data sets with extra short-term de-
pendence or several periods are introduced and the parameter estimators and their
properties are extended to cover these models. Finally, in Chapter 5, we study a data
set of twenty-three years of measles case counts using results established in previ-
ous chapters and consider the wide applications for extensions of the latent variable
model to analyse longitudinal, multivariate or spatial-temporal data.
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Chapter 1

Introduction

1.1 Periodic Poisson count data

The focus of this thesis is the estimation of periodicity as part of a parametric model

for time series of Poisson counts. Many examples of time series count data, such as

the hourly number of hospital admissions, will only be in�uenced by predictable pe-

riods such as a 24-hour, seasonal or yearly cycle. Emergency department admissions

measured hourly might be low at some time during the day when many people are in

a relatively safe work environment or late at night when most are sleeping, and high

in the evening or early morning due to factors such as poor outdoor visibility and

increased travel. Over longer periods of time, one might expect hospital admissions

to vary according to the day of the week and the time of the year. However there are

other events, such as annual cases of an endemic disease, where the frequency of any

underlying oscillatory pattern might be much harder to predict but of signi�cant im-

portance. To illustrate some of the wide variety of situations which produce periodic

Poisson time series, three rather di�erent sets of count data are displayed graphically

below.

11
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Figure 1.1 shows the monthly numbers of serious car crashes in the UK, which

is a classic example of a discrete time series with predictable periodicity and step-

changes due to outside factors. Although quite "jagged", the data plot displays a

clear twelve-month period, a signi�cant decrease from 1983 when wearing seatbelts

in the front seat was made compulsory and a steady increase until 1974 when the

movement of petrol prices changed from a slow decrease to a rapid rise. The annual

cycle peaks around December every year, as one would predict after considering fac-

tors such as visibility, road grip and changes in car travel rates due to weather and

socialising patterns. In contrast to car crashes, annual lynx trappings or averaged

sunspot numbers are not expected to be dependent on any highly seasonal factors

like weather. Thus, although the graphs in Figures 1.2 and 1.3 all suggest that both

data sets have a regular cycle, one can not predict the periodicity of either series

in advance. Astronomical events within the solar system are far more likely to be

in�uenced by the orbits of Jupiter and other gas giants than little rocky planets, so

the periodicity of the sunspots is unlikely to be an integer or even a rational number

of years, although it is easy to infer from the data plots that it is close to eleven

years. The nine to ten-year periodicity apparent in the yearly lynx counts is likely to

be one part of a long-term "predator-prey" cycle, where populations of one or more

primary organisms and their consumers rise and fall almost in synchrony apart from

a short time-lag. Without more information, one does not know whether the lynx are

the predators or the prey, with the trappers acting as predators in the latter case.

Both the sunspot and the lynx counts are good examples of data sets where pre-

cise estimation of the periodicity would be useful. Both are very periodic, yet the

non-integer length of the sunspot cycle and the varying lengths of time between con-

secutive peaks in the lynx counts would make estimates of either period directly from

the data rather imprecise. The relative magnitudes of peak observations in both se-

ries also suggest that there could be secondary, longer-term periods which might also

be of interest.
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Figure 1.1: Plot of the number of drivers killed or seriously injured in car accidents,
1969-1984
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Figure 1.2: Averaged sunspot numbers, measured yearly 1700-1988 and monthly
1749-1997
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Figure 1.3: Annual Canadian lynx trappings, 1821 to 1934
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1.2 A review of time series analysis

In this section we shall give a summary of methods for time series modelling. First

there shall be a brief introduction to the very widely-used ARMA(p,q) model, as

described in Priestley (1981) and Brockwell and Davis (1991), then a discussion of

the analyses of non-homogeneous Poisson processes developed recently.

1.2.1 The ARMA model

The best known type of model for time series is the autoregressive moving-average

model of order p and q, denoted the ARMA(p,q) model. A time series {Xt, t = 0,±1,±2, . . .}

is said to be an ARMA(p,q) process if for every t,

Xt − ϕ1Xt−1 − . . .− ϕpXt−p = et + θ1et−1 + . . .+ θqet−q (1.2.1)

where {et, t− 0,±1,±2, . . .} is a sequence of independent and identically distributed

(iid) random variables, often Gaussian, with mean µ and variance σ2. Let B denote

the backward shift operator, de�ned as BjXt = Xt−j for j = 0,±1,±2, . . .. The

ARMA(p,q) process can then be re-written as

ϕ(B)Xt = θ(B)et (1.2.2)

where ϕ(z) = 1 − ϕ1z − . . . − ϕpz
p and θ(z) = 1 + θ1z + . . . + θqz

q are referred to

as the autoregressive and the moving average polynomials of the di�erence equation

(1.2.1) respectively. The ARMA(p, q) process is said to be causal if all the roots of

the characteristic equation ϕ(B) = 0 lie outside the unit circle. Similarly, the model

is said to be invertible if the roots of θ(B) = 0 lie outside the unit circle.

The time series {Xt, t ∈ Z} is said to be weakly stationary if

(i) E (X2
t ) <∞ for all t ∈ Z

(ii) E (Xt) = m for all t ∈ Z

(iii) Cov (Xt, Xs) = Cov (Xr+t, Xr+s) = γX (|t− s|) for all r, s, t ∈ Z.
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Any time series {Xt} which can be expressed as a causal and invertible ARMA pro-

cess can be written as

Xt = et +
∞∑
i=1

ψiet−i (1.2.3)

where
∑∞

i=1 ψi <∞. As {et} is stationary, it follows that {Xt} is weakly stationary.

ARMA processes are usually assumed to be weakly stationary, as this facilitates model

selection, parameter estimation and forecasting. However, in many cases, observed

time series do not appear to have constant mean or variance. It is therefore common

practice to �rst remove any trend or seasonality from a data set. These are usually

expressed as components in the representation

Xt = mt + st + Yt (1.2.4)

where mt is a slowly increasing or decreasing function and st is a function of a known

period d, known as the "trend component" and the "seasonal component" respec-

tively. and Yt is a stationary process referred to as a "random noise component". If

seasonal or random noise �uctuations are increasing over time, a prior transforma-

tion such as logarithm or square-root is often used to improve the �t of the data to

a model of the form (1.2.4). Similarly, an exponential or quadratic transform can be

used for data with decreasing �uctuations. When there appears to be no seasonal

component, the trend component can be estimated by �tting a nth-order time poly-

nomial a0+ a1t+ . . .+ ant
n by least-squares estimation, isolated as a moving-average

function m̂t = (2q + 1)−1
∑q

j=−qXt+j or eliminated by repeatedly di�erencing the

data until the observations resemble a stationary process {Wt}.

Di�erencing, using the single lag-d di�erence operator ∇d de�ned as

∇dXt = Xt −Xt−d (1.2.5)

can similarly be used to remove the seasonal component. The trend of the resulting

seasonless process

X∗
t = ∇dXt = mt −mt−d + Yt − Yt−d (1.2.6)
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can then be eliminated using one of the three methods described previously. An

alternative method is to estimate the seasonal component st. Suppose the data set

{x1, . . . , xN} can be divided into j subsets

{x1, . . . , xd} , {xd+1, . . . , x2d} , . . . ,
{
x(j−1)d+1, . . . , xjd

}
. First, a preliminary moving-

average estimate of the trend is calculated.

m̂t =


1
d
(0.5xt−q + xt−q+1 + . . .+ xt+q−1 + 0.5xt+q) d = 2q

1
d
(xt−q + xt−q+1 + . . .+ xt+q−1 + xt+q) d = 2q + 1

. (1.2.7)

This estimate is considered optimal in terms of eliminating the e�ects of both the

seasonal and the random components. For each 1 ≤ k ≤ d, sk is then estimated as

ŝk = wk −
1

d

d∑
i=1

wi (1.2.8)

where

wk =
1

j − 1

∑
i:q<k+id<dj−q

(xk+id − m̂k+id) . (1.2.9)

The �nal step is to re-estimate or eliminate the trend from the deseasonalised data

set

dt = xt − ŝt (1.2.10)

by one of the methods described for non-seasonal data.

The ARMA model is well developed, �exible and easy to implement. However,

its feasibility depends on the data being weakly stationary as well as continuous

and analysis is less straightforward for non-Gaussian random variables. The Pois-

son counts we are interested in will always be non-stationary due to the underlying

harmonic behaviour as well as any linear regressors such as time or location. The

methods suggested for detrending are clearly not applicable to discrete data sets, as

neither xt/q or the time polynomial parameters are necessarily integer-valued. The

de-seasonalised data set xt−ŝt would also contain non-integer values and a reasonable

idea of the underlying periodicity is needed to estimate the seasonal component st in

the �rst place. The white noise terms {et} would not follow a Gaussian distribution,

so overall the standard ARMA model will have limited usefulness.
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1.2.2 Models for non-homogeneous Poisson processes

A time-inhomogeneous Poisson Process is a counting process {N(t) : t ≥ 0}, charac-

terised by a time-varying intensity function λ(t) such that the number of occurrences

N(b)−N(a), in time (a, b] , follows a Poisson distribution

P ((N(b)−N(a)) = k) = e−λa,b
λka,b
k!

(1.2.11)

where λa,b =
∫ b
a
λ(t).dtMuch work has been done recently in modeling time-inhomogeneous

Poisson Processes, usually via estimation of the intensity function (see Willis (1964),

Kuhl et al. (1997),(1998), Helmers et al. (2003),(2005) and others). These devel-

opments might, at �rst, appear to be of use in our area of interest, the analysis of

Poisson count time series, but have severe limitations. One such handicap is the im-

portance of extra measurements in the Poisson process models, namely the occurrence

or arrival times of the events. Such data would not be possible to gather for many

Poisson counts, due to the counted events being continuous changes in state rather

than discrete occurrences. At what precise time does an individual catch a disease or

another sunspot appear on a continuous time scale? The developments in processes

have other limitations besides their dependence on arrival times. Many of the models

are nonparametric and among those which have been developed for periodic data,

most are speci�ed only for data with a known periodicity or for cyclic data. Thus

the Poisson process models are not readily extendable to a parametric model for a

sample of Poisson counts in�uenced by unknown frequencies or any non-cyclic time-

varying regressors such as a trend function. The few papers written on estimation

of frequency, such as Hannan(1974), Vere-Jones(1982) and Bebbington et.al.(2004),

are also restricted to series with purely cyclic behaviour. The methods used could

consequently be very sensitive to nonlinear link functions or the changes in variance

arising from underlying monotonic behaviour. However, as a series of Poisson counts

can often be thought of as a Poisson process with the number of occurrences only

recorded at discrete time points, some of the methods and models studied in this

thesis could be applicable to Poisson processes. For example, periodicity estimators

developed for Poisson counts might be applicable to some Poisson processes.
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1.3 The basic model with trigonometric latent pro-

cess

We have discussed the limitations of the popular ARMA model and methods de-

veloped for Poisson processes for the analysis of periodic Poisson count series. Most

other recent developments are extensions of the ARMA model and include the ARCH,

GARCH, GLARMA and INAR models. These are known as observation- driven mod-

els as all observations are speci�ed as functions of previous observations. We shall

initially be considering a purely parametric model, similar to that �rst proposed in

Zeger(1988), with correlation and deviations from a log-linear mean described by an

underlying latent process.

Suppose that we have a series of count data random variables Y = (y1, y2, . . . , yT ).

The hypothesised model for the data is {yt|ϕ} ∼ Po
(
exp

(
xTt ϑ

)
e2t
)
where ϕ is a ran-

dom variable with a U (0, 2π) distribution, ϑ is a parameter vector, xTt is the design

vector at timepoint t and e2t = cos2 (ωt+ ϕ) for an unknown frequency ω. Then

E (yt | ϕ) = E (yt | ϕ) = exp
(
xTt ϑ

)
cos2 (ωt+ ϕ) = V (yt | ϕ)

Cov (yt, yt+s | ϕ) = 0 for all s ̸= 0

E (yt) = E (E (yt | ϕ)) = 0.5 exp
(
xTt ϑ

)
E
(
2 cos2 (ωt+ ϕ)

)
where

E
(
2 cos2 (ωt+ ϕ)

)
=

1

2π

∫ 2π

0

1 + cos (2ωt+ 2ϕ) dϕ =
1

2π

[
1 +

1

2
sin (2ωt+ 2ϕ)

]2π
0

=
2π + 1

2
sin (2ωt)− 1

2
sin (2ωt)

2π
= 1

Thus E (yt) =
exp

(
xTt ϑ

)
2

= µt, say. (1.3.1)

The model can then be rewritten as {yt|ϕ} ∼ Po (µtεt) where µt =
1
2
exp

(
xTt ϑ

)
and

εt = 2e2t .

By the theorem of total variance,

V (yt) = V (E (yt | ϕ)) + E (V (yt|ϕ)) = V (µtεt) + E (yt)

= µ2
tE
(
(εt − 1)2

)
+ µt
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where

E
(
(εt − 1)2

)
= E

(
cos2 (2ωt+ 2ϕ)

)
=

1

2
E (1 + cos (4 (ωt+ ϕ)))

=
1

4π

∫ 2π

0

[1 + cos (4 (ωt+ ϕ))] dϕ =
1

4π

[
1 +

1

4
sin (4 (ωt+ ϕ))

]2π
0

=
2π + 1

4
sin (4ωt)− 1

4
sin (4ωt)

4π
=

1

2

Thus V (yt) = µt +
µ2
t

2
. (1.3.2)

This unconditional variance is always larger than the expectation of yt, a useful

property when many real-world incidences of count data appear overdispersed. For

all s ̸= 0,

Cov (yt, yt+s) = Cov (E (yt | ϕ) , E (yt | ϕ)) + E (Cov (yt, yt+s|ϕ))

= E ((µtεt − µt) (µt+sεt+s − µt+s)) + E (0)

= µtµt+sE ((εt − 1) (εt+s − 1))

where

E ((εt − 1) (εt+s − 1)) = E (cos (2 (ωt+ ϕ)) cos (2 (ωt+ ωs+ ϕ)))

=
1

2
E (cos (4ωt+ 2ωs+ 4ϕ) + cos (2sω))

=
1

4π

∫ 2π

0

[cos (4ωt+ 2ωs+ 4ϕ) cos (2sω)] dϕ

=
1

4π

[
cos (2sω) +

1

4
sin (4ωt+ 2ωs+ 4ϕ)

]2π
0

=
cos (2sω)

2

giving Cov (yt, yt+s) =
µtµt+s cos (2sω)

2
for all s ̸= 0. (1.3.3)

Looking at the model yt ∼ Po (µtϵt) which is discussed in Davis et al.(2000), we can

see that our model is actually identical to that used there, prior to any assumptions

on the distribution or autocorrelation structure of εt. Our variable term εt, in other

words, is a weakly stationary process with mean 1, variance σ2 (= 1/2) and correla-

tion function ρ (s) (= cos (2ωs)). The unconditional mean µt is of exponential type,

equal to exp
(
xTt ϑ− log[2]

)
= exp

(
xTt θ

)
. These similarities suggest that many of

the methods used in Davis et al.(2000) could be still be applicable to the analysis of

periodic count data when the underlying frequencies are unknown.
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1.4 Outline of the thesis

Now that we have our basic model with its conditional Poisson distribution and

unconditional trigonometric covariance structure, the rest of the thesis will be divided

between studying possible methods for parameter estimation, extensions to the basic

model, and real data analysis. In Chapter 2, we shall trial several methods for

estimating the periodicity directly from a data set and Chapter 3 will consist of proofs

of the asymptotic properties of empirically promising parameter estimators for the

basic model. In Chapter 4, we shall study extensions to the basic models obtained

by adding a secondary latent process, in particular an ARMA process. Finally in

Chapter 5 we analyse UK measles case count data 1944-1966.



Chapter 2

Methods for estimating ω directly

from the data

2.1 Introduction

There are multiple methods for estimating the parameters of any linear model for un-

correlated Poisson counts and, more recently, some for correlated count data. Thus

our area of interest is the estimation of the frequency parameter ω. Three di�erent

approaches will be examined in this chapter - estimating ω as one of several parame-

ters of a nonlinear model, identifying an unknown period from graphical plots of the

data and transformations of the data, and the potential for estimating the frequency

or period from the estimator of the latent process autocovariance function suggested

in Zeger (1988). The poor empirical evidence for the �rst two approaches will be

revealed and possible improvements upon Zeger's covariance estimator are discussed.

2.2 The nonlinear model

Theoretically ω can be estimated as one of p + 2 parameters of a nonlinear model

for Y. Following the methods proposed in Gallant (1987), the sum of squares

S (Θ) =
T∑
t=1

(yt − µtεt)
2 (conditional on ϕ) is �rst replaced by a second-order Taylor

expansion. The vector Θ̂ which minimises this Taylor series approximation is taken

23
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as the LSE of Θ0 =
(
θT , ω, ϕ

)
although this may be a local rather than a global

minimising vector and accuracy can depend on the closeness of the approximation.

Denoting E (Y|ϕ) by f (Θ) and ∂
∂Θ

(f (Θ)) by F (Θ), Θ̂ is the vector satisfying

FT
(
Θ̂
) [

Y − f
(
Θ̂
)]

= 0. Substituting in a �rst-order Taylor approximation of

f
(
Θ̂, t

)
and rearranging terms then gives the iterative solution

Θ̂n = Θ̂n−1 +
[
FT
(
Θ̂n−1

)
F
(
Θ̂n−1

)]−1

F
(
Θ̂n−1

) [
Y − f

(
Θ̂n−1

)]
. (2.2.1)

This is usually referred to as the Gauss-Newton method. A second-order approxima-

tion of S (Θ) gives the iterative solution

Θ̂n = Θ̂n−1 +
[
−H

(
Θ̂n−1

)]−1

F
(
Θ̂n−1

) [
Y − f

(
Θ̂n−1

)]
(2.2.2)

where H =
∂2S (Θ)

∂Θ∂ΘT

This is the Newton-Raphson method. To ensure that the successive estimates are

converging to a minimising value in the sense that S (Θn) ≤ S (Θn−1), it is com-

mon to use a rescaled shift rather than the whole shift. If we express either of

the above methods as Θ̂n = Θ̂n−1 + D̂n−1, it is often preferable to use the it-

erative step Θ̃n = Θ̃n−1 + λnD̂n−1 where λn is the largest number in (0, 1] such

that S
(
Θ̃n

)
≤ S

(
Θ̃n−1

)
. In general, trialing successive numbers in the sequence{

1, 0.9, 0.8, 0.7, 0.6, 1
2
, 1
4
, . . . , 1

2n
, . . .

}
, until a parameter vector with a smaller sum-of-

squares is found, is thought to be nearly always adequate. We shall refer to this as

�λ-adjustment�. There is also an alternative rescaling method explained in Marquardt

(1963). The matrix Ân−1 = FT
(
Θ̂n−1

)
F
(
Θ̂n−1

)
or −H

(
Θ̂n−1

)
is adjusted by the

addition of δIp with δ chosen at each iteration as follows: Take a small starting value

such as 0.01 for δ0 and a value close to 1 such as 1.1 for v. Compute

Θ̃n1 = Θ̂n−1 + [An−1 + δ1Ip]
−1F

(
Θ̂n−1

) [
Y − f

(
Θ̂n−1

)]
Θ̃n2 = Θ̂n−1 + [An−1 + δ2Ip]

−1F
(
Θ̂n−1

) [
Y − f

(
Θ̂n−1

)]
(2.2.3)

where δ1 = δ0 and δ2 =
δ0
v
. Calculate S

(
Θ̃n1

)
and S

(
Θ̃n2

)
If S

(
Θ̃n−1

)
≤ S

(
Θ̃n1

)
and S

(
Θ̃n−1

)
≤ S

(
Θ̃n2

)
, then compute successive Θ̃nr

using δr = δ0v
r (r = 1, 2, . . .) until an estimate Θ̃np with a smaller sum of squares

than Θ̃n−1 is found. Θ̃np = Θ̂n
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If S
(
Θ̃n2

)
≤ S

(
Θ̃n1

)
and S

(
Θ̃n2

)
≤ S

(
Θ̃n−1

)
, then Θ̂n = Θ̃n2

If S
(
Θ̃n1

)
≤ S

(
Θ̃n−1

)
and S

(
Θ̃n1

)
≤ S

(
Θ̃n2

)
, then Θ̂n = Θ̃n1

The ordinary least-squares (OLS) approach, as with linear models, is optimal for

Normal data, not Poisson counts. An improved algorithm could be generated by

using weighted least squares instead, with weight matrixW = diag
(

1
µtεt

)
. Weighting

the squares by the inverse of the conditional variance gives a consistent estimator

Θ̂ of Θ with asymptotic distribution Np

(
Θ,
[
FTWF

]−1
)
(Gallant 1987, Chapter

4). The ordinary least squares estimator may however be inconsistent. Programs

for performing the OLS Gauss-Newton algorithm with λ-adjustment (G-N lambda),

the OLS Newton-Raphson algorithm with λ-adjustment (N-R lambda), the WLS

Gauss-Newton algorithm with λ-adjustment (Weighted G-N lambda) and the OLS

Gauss-Newton algorithm adjusted using Marquardt's method (G-N Marquadt) have

been written for the statistical package R and tested on several simulated data sets.

All appear to produce similar results, with the Newton-Raphson algorithm being

the fastest but least robust and weighted Gauss-Newton is rather slower. For the

simple model {yt | ϕ} ∼ Po (exp (α + βt) cos2 (ωt+ ϕ)) all four algorithms appear

to estimate β quite accurately and robustly, α very poorly (with iterations often

diverging from rather than converging to the true value) and estimates of ω and ϕ

are accurate only when the starting values are very close to the true values. The

results, all from starting values (α̂, β̂, ω̂, ϕ̂)=(1,0,0.5,0.5), for four simulations of size

500 are displayed in Table 2.1. The accurate estimates of the trend compared with

the other parameters is due to β being the parameter with most in�uence over the

moments of the data. Small changes in the value of β have greater e�ect on the sum of

squares than the other parameters. Plots of the sum of squares for various values for

α, ω and ϕ are displayed below. Together they suggest another explanation for the

comparatively poor estimation of the other parameters. The SS-minimisers of α and

ϕ di�er from their true values when ω does, while the SS-plot when ω is varying has

multiple local minima. Both the Gauss-Newton and the Newton-Raphson method

are algorithms designed to �nd the vector Θ0 which satis�es ∂
∂Θ

(S (Θ)) = 0 but
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Table 2.1: Parameter estimates from four non-linear least-square algorithms
True G-N lambda N-R lambda G-N Marquad Weighted G-N
1 -0.32235892 -0.32235892 0.999994272 -4.2933452

0.005 0.006351296 0.006351296 0.004575719 0.0156511
0.314159265 0.498948248 0.498948248 0.499878807 0.4883015
0.785398163 1.26738712 1.26738712 1.570796327 1.5707963

1 0.8985067 0.8985067 0.500680567 0.676854059
-0.005 -0.004409429 -0.004409429 -0.004332558 -0.000610715

0.314159265 0.503375423 0.503375423 0.509408731 0.499421269
0.785398163 1.08654907 1.08654907 1.570796327 1.570796327

1 -0.31676643 -0.31676643 0.999997824 -0.935974695
0.005 0.00624283 0.00624283 0.004541366 0.007231628

0.314159265 0.49624497 0.49624497 0.499799555 0.446885157
0 0.43770272 0.43770272 1.570796327 1.570796327
1 0.995311833 0.995311833 0.611020959 0.61029996

-0.005 -0.004944706 -0.004944706 -0.004872163 -0.001052844
0.314159265 0.510306002 0.510306002 0.499053744 0.498547234

0 0.180400024 0.180400024 1.570796327 1.570796327

there is no way of distinguishing whether such a vector is of the true values or a set

of locally minimising or maximising (LMM) values. Consequently ω is quickly �xed

at a point very close to its starting value due to the multitude of minima. Then the

intercept and phase shift converge to values that minimise the sum of squares for the

local minima of ω. It is probably this which is also accountable for the ϕ estimated by

the ordinary Gauss-Newton algorithm with Marquardt adjustment and the weighted

Gauss-Newton algorithm with λ-adjustment converging to identical values to each

other in all four simulations - by chance these two algorithms estimate ω as the same

LMM in each simulation, which then causes the same mis-estimation of ϕ. This

local minimisation problem is the main drawback in estimating ω as one of several

parameters in a nonlinear model. None of the algorithms tried so far appear robust

enough to give reliable estimates of the frequency when the starting value is not itself

a good estimate.
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Figure 2.1: Plots of the unweighted sum-of-squares for a simulation from the model
yt ∼ Po (e1+0.005∗t cos2 (πt/10 + π/4)) over a range of values of frequency, intercept
and phase shift. The black line in all three shows the SS when all other parameters
are at their true values, the red lines when ω is �xed at π/11 and the green line when
ϕ is �xed at π/2
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2.3 ω as a pattern in data plots

An alternative approach to estimating ω is to examine transforms of the data, which

may be chosen to exaggerate the e�ects of the trigonometric elements in the condi-

tional means. For various simulated data sets, the raw data, their logarithms and

their di�erenced logarithms were the �rst such transformed data sets to be examined.

Some of the corresponding sample plots did appear to have a regular periodic struc-

ture, being similar in shape to a sine or cosine function with or without a linear or

exponential trend. This degree of periodicity is apparent in the data plot for the sim-

ulation with conditional mean exp (1 + 0.02) cos2 (2πt/40) and is pronounced in the

plots of the logarithm and di�erenced logarithm. However all these plots were among

those of data based on models with positive trends large enough to cause unrealistic

"explosive" behavior in the simulations. In the �rst graph below, the counts rapidly

grow from between 0 and 10 to around 50000. It is highly unlikely that any of the

real-life situations we might be interested in, such as astronomical events or pandemic

outbreaks, would actually show such rapid growth. Although the "spikiness" of the

second and third sets of plots, of 500 and 150-element simulations with very small

negative trends, do suggest that the data has some periodicity, the patterns are too

irregular to infer what the period is with any accuracy.

The sample periodogram was the next transform to be investigated. Variations of the

periodogram, which is the modulus of a discrete Fourier transform of the data, are the

method of choice in frequency estimation papers such as Hannan(1973), mentioned

brie�y in the introduction. This method appeared to be slightly better suited to our

purpose in some respects than logarithms or di�erence operators of the data, in that

the positive results were not con�ned to simulations of data with unrealistic mean

growth. Distinguishable peaks near 0.05, indicating a periodicity of 0.05−1 = 20, can

be seen in the periodograms for all three simulated data sets. The high incidence

of insigni�cant peaks generated by random variation, particularly in the third peri-

odogram (for a relatively small simulated data set), suggests that the periodogram

is far from ideal as a sample statistic. It is unlikely that one could infer from a
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periodogram with two distinct peaks which peak corresponded to the true periodic-

ity of the data set or indeed whether the data set is dependent on more than one

frequency. To summarise, the sample periodogram has several pros and cons as a

sample statistic, namely

• The periodogram does usually display noticeable peaks corresponding to the

true frequency and sometimes multiples of it, particularly for large data sets

with small trend functions.

• The periodogram is actually only de�ned as a statistic for frequency estimation

on samples of stationary data. Even then it is not a consistent estimator, as

proven in detail in Priestley (1981). The type of data we are studying here

is nonstationary either conditionally or unconditionally. Thus even when the

periodogram of a sample does have one or more noticeable peaks, there is no

theoretical evidence that the frequencies corresponding to those peaks are of

signi�cance. Ideally we would have theoretical as well as empirical evidence for

a sample statistic.

• There is empirical evidence that random variation alone can cause noticeable

peaks, which might be indistinguishable from true frequencies, particularly

when sample size is quite small.
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Figure 2.2: Plots of three simulated data sets, on the left, and their
logarithms, on the right. Simulations Y1, Y2 and Y3 have condi-
tional means exp (1 + 0.02t) cos2 (2πt/40), exp (1− 0.001t) cos2 (2πt/40) and
exp (1− 0.001t) cos2 (2πt/40). Sample sizes are 500, 500 and 150 respectively
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Figure 2.3: Plots of the periodograms of the three simulated data sets, as estimates
of their spectrums, on the right, and their di�erenced logarithms, on the left.
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2.4 Estimating ω from Zeger's latent ACF estimator

In Zeger (1988), a method-of-moments estimator γ̂ (s) for the latent process autoco-

variance, similar to the ratio of the sample covariance functions for the data and for

a unconditional mean estimator, is proposed. There is strong empirical evidence that

these covariance estimates, as a data set, are smoothly periodic enough to estimate

ω from graphically, either directly from the data plot or via a Fourier transform. We

will show examples of empirical evidence and establish theoretical evidence for Zeger's

estimator when the mean estimator used in γ̂ (s) is unbiased, then examine the bias

and other problems which arise when using a natural choice of mean estimator such

as ex
T
t θ̂ where θ̂ is a consistent estimator of the mean parameter vector.

2.4.1 The periodicity of an unbiased estimator

A more successful approach than the previous two, on the basis of empirical evidence,

is the estimation of ω via estimation of the covariances of εt. Recall that

Cov (yt, yt+s) = µtµt+sCov (εt, εt+s) =
µtµt+s cos (2ωs)

2

which gives for all t ≥ 1

Cov (εt, εt+s) =
cos (2ωs)

2

Zeger (1988) suggests the method-of-moments estimator

γ̂ (s) =

T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

T−s∑
t=1

µ̂tµ̂t+s

for Cov (εt, εt+s), using some estimate µ̂t of E (yt). If we assume that {µ̂t} is a series

of unbiased and mutually uncorrelated estimators and approximate the mean of the
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ratio by the ratio of the means (Davis et al. (2000),p10)

E (γ̂ (s)) ≃

T−s∑
t=1

E ((yt − µ̂t) (yt+s − µ̂t+s))

T−s∑
t=1

E (µ̂tµ̂t+s)

=

T−s∑
t=1

Cov (yt, yt+s)

T−s∑
t=1

µtµt+s

=

cos (2ωs)

2

T−s∑
t=1

µtµt+s

T−s∑
t=1

µtµt+s

=
cos (2ωs)

2
. (2.4.1)

Thus γ̂ (s) is an asymptotically unbiased estimate of Cov (εt, εt+s). Having accurate

estimates of {cos (2tω)} for 1 ≤ t ≤ τ < T , we should be able to gain a fairly precise

estimate of ω from either the basic plot of {γ̂ (s)} or from examining the modulus of

a Discrete Fourier Transform (DFT) of {γ̂ (s)}. The maxima of the former, which

we will refer to as the direct plot, would be expected to occur at lags corresponding

to multiples of the true period π
ω
, while it is well established that the DFT of an N-

element harmonic process with frequency θ will be maximised at N
θ
if θ is a multiple

of 2π
N

and at k for 2πk
N

closest to θ otherwise.

Several data sets, of various sizes, have been simulated from the single-period model

with various trend and frequency parameters and the distinctness of their peri-

ods/frequencies compared for the {γ̂ (s)} DFT and direct plot of each. From these

graphs, there appears to be good empirical evidence for both methods, a suggestion

that both produce slightly less clear results for data with negative trends, and also

some indication of their applicability with respect to each other. The direct-plot

approach appears easier to estimate the period from than the DFT in the case of

a model with a single, integer-valued period. This is due to the direct plot having

multiple maxima opposed to a single maximum on the DFT modulus. Maxima at

all multiples of the period could allow one to distinguish which of two consecutive

values near the �rst maximum is the period, by studying later extrema, all of which

are expected to be located at multiples of the �rst maximising value. The graph of

the estimates has an extra advantage when the period p is coprime to τ as well as

integer-valued. In this case p ̸= τ/k for any integer, so the true frequency 2π
p
̸= 2πk

τ
.
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Thus whilst the direct plot will have repeated maxima at p, 2p, . . ., the DFT will

have a rough peak close to but unequal to the true frequency. However it would

be easier to estimate the frequency from the DFT when ω is a multiple of 2π
τ

and

period p = 2π
ω
is not integer-valued. Due to the expectation of the direct plot being

a harmonic curve and that of the DFT being close to a delta function, the DFT also

has more potential to be applied to models with multiple periods.

2.4.2 Zeger's covariance estimator under a GLM mean

The hypothesis used throughout the previous section was that the mean estimator µ̂t

is unbiased and mutually uncorrelated, but the actual estimates used to gather empir-

ical evidence for the two methods based on γ̂ (s) were all calculated as exp
(
xTt θ̂GLM

)
.

This parameter estimator is the maximum likelihood estimate from the conditional

quasi-likelihood function

lT (θ, α) =
1

T

T∑
t=1

[
yt
(
xTt θ + f(yt−1, α)

)
− exp

(
xTt θ + f(yt−1, α)

)]
maximised using a Fisher scoring algorithm. This is very similar to the methodol-

ogy used to estimate the parameters in a generalised linear model with canonical link

function (see McCullagh and Nelder (1989)) so the parameter estimator and the func-

tions f(θ̂ which are estimators of f(θ are consequently referred to as generalised linear

model GLM estimators. This is the parameter estimate used throughout Davis et al.

(2000), where it is proven, for a single parameter model with log-linear latent process,

to be consistent with asymptotic distribution θ̂GLM ∼ Np

(
θ,Ω−1

1T +Ω−1
1TΩ11TΩ

−1
1T

)
.

Ω1T =
T∑
t=1

xtx
T
t exp

(
xTt θ

)
and

Ω11T =
T∑
t=1

T∑
s=1

xtx
T
s exp

(
xTt θ

)
exp

(
xTs θ

)
γ (t− s) . (2.4.2)

This result is conjectured in Davis et al. (2000) to be extendable to models with

bounded regressors and certain non-linear latent processes. Although the former

is easy to ensure in our model, there is little information in Davis et al. (2000)
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on what criteria the latent process must satisfy for the parameter estimate to be

consistent. Assuming that the class of convergent models does include our model

with its trigonometric process, it is easily shown that µ̂t,GLM = exp
(
xTt θ̂GLM

)
is not

in fact an unbiased estimate of µt.
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Figure 2.4: Line plots and DFT-moduli of covariance estimates from simulations
with conditional means exp (1 + 0.005) cos2 (2πt/40),exp (1− 0.004) cos2 (2πt/24)
and exp (1− 0.004) cos2 (2πt/24). Sample sizes are 500, 500 and 200 respectively
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For Z ∼ N (µ, σ2)

E (exp (Z)) =

∫ ∞

−∞

1√
2πσ

exp

(
− (z − µ)2

2σ2

)
exp (z) dz

=

∫ ∞

−∞

1√
2πσ

exp

(
− (z2 − 2z (µ+ σ2) + µ2)

2σ2

)
dz

=

∫ ∞

−∞

1√
2πσ

exp

− (z − (µ+ 2σ2))
2
+ 2σ2

(
µ+ σ2

2

)
2σ2

 dz

= exp

(
µ+

σ2

2

)∫ ∞

−∞

1√
2πσ

exp

(
− (z − (µ+ 2σ2))

2

2σ2

)
dz

= exp

(
µ+

σ2

2

)
. (2.4.3)

From multivariate statistics,

xTt θ̂GLM ∼ Np

(
xTt θ,x

T
t

[
Ω−1

1T +Ω−1
1TΩ11TΩ

−1
1T

]
xt
)

so

E (µ̂t) = E
(
exp

(
xTt θ̂GLM

))
= exp

(
xTt θ + xTt

GT

2
xt

)
= µt exp

(
xTt

GT

2
xt

)
(2.4.4)

where GT =
[
Ω−1

1T +Ω−1
1TΩ11TΩ

−1
1T

]
.

Similarly,

(xs + xt)
T θ̂GLM ∼ Np

(
(xs + xt)

T θ, (xs + xt)
T GT (xs + xt)

)
so

E (µ̂sµ̂t) = E
(
exp

(
(xs + xt)

T θ̂GLM

))
= exp

(
(xs + xt)

T θ + (xs + xt)
T GT

2
(xs + xt)

)
= µsµt exp

(
(xs + xt)

T GT

2
(xs + xt)

)
. (2.4.5)

Note that

E


T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

T−s∑
t=1

µ̂tµ̂t+s

 = E


1

T

T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

1

T

T−s∑
t=1

µ̂tµ̂t+s


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and

E

(
T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

)
T−s∑
t=1

E (µ̂tµ̂t+s)

= E


1

T

T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

1

T

T−s∑
t=1

E (µ̂tµ̂t+s)

 .

Therefore

E


1

T

T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

1

T

T−s∑
t=1

µ̂tµ̂t+s

−
E

(
T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

)
1

T

T−s∑
t=1

E (µ̂tµ̂t+s)

= E


1

T

T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

1

T

T−s∑
t=1

µ̂tµ̂t+s

−

1

T

T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

1

T

T−s∑
t=1

E (µ̂tµ̂t+s)



= E


1

T

T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

1

T

T−s∑
t=1

µ̂tµ̂t+s

T−s∑
t=1

E (µ̂tµ̂t+s)

(
1

T

T−s∑
t=1

E (µ̂tµ̂t+s)−
1

T

T−s∑
t=1

µ̂tµ̂t+s

) .

(2.4.6)

By Chebychev's inequality

P (|µ̂t+sµ̂t − E (µ̂t+sµ̂t) | > ϵ) ≤ V (µ̂t+sµ̂t)

ϵ2

= ϵ−2µ2
tµ

2
t+s exp

(
(xt+s + xt)

T V
(
θ̂GLM

)
(xt+s + xt)

)
×

(
exp

(
(xt+s + xt)

T V
(
θ̂GLM

)
(xt+s + xt)

)
− 1
)
−→ 0

as T −→ ∞. (2.4.7)

Thus µ̂t+sµ̂t −→
P

E (µ̂t+sµ̂t) so

1

T

T−s∑
t=1

µ̂tµ̂t+s −
1

T

T−s∑
t=1

E (µ̂tµ̂t+s) −→
P

0.

Since it is easy to verify that

V

(
1

T

T−s∑
t=1

µ̂tµ̂t+s

)
−→ 0 as T −→ ∞,
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we have that {∣∣∣∣ 1T
T−s∑
t=1

µ̂tµ̂t+s −
1

T

T−s∑
t=1

E (µ̂tµ̂t+s)

∣∣∣∣
}

is uniformly integrable. Hence

E


1

T

T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

1

T 2

T−s∑
t=1

µ̂tµ̂t+s

T−s∑
t=1

E (µ̂tµ̂t+s)

(
1

T

T−s∑
t=1

E (µ̂tµ̂t+s)−
1

T

T−s∑
t=1

µ̂tµ̂t+s

) −→ 0

=⇒ E


1

T

T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

1

T

T−s∑
t=1

µ̂tµ̂t+s

 −→
E

(
T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

)
1

T

T−s∑
t=1

E (µ̂tµ̂t+s)

as T −→ ∞. (2.4.8)

Thus we can approximate

E


T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

T−s∑
t=1

µ̂tµ̂t+s

 by

E

(
T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

)
T−s∑
t=1

E (µ̂tµ̂t+s)

.

Inserting the �rst two moments of µ̂t into the second expression,

E (γ̂ (s)) ≈

T−s∑
t=1

E (ytyt+s)− E (yt+s)E (µ̂t)− E (µ̂t+s)E (yt) + E (µ̂tµ̂t+s)

T−s∑
t=1

E (µ̂tµ̂t+s)

= 1 +

T−s∑
t=1

µtµt+s

(
1 +

cos (2ωs)

2
− exp

(
xTt

GT

2
xt

)
− exp

(
xTt+s

GT

2
xt+s

))
T−s∑
t=1

µt+sµt exp

(
(xt+s + xt)

T GT

2
(xt+s + xt)

)
(2.4.9)

exp

(
(xt+s + xt)

T GT

2
(xt+s + xt)

)
≥ 1

and 1− exp

(
xTt

GT

2
xt

)
− exp

(
xTt+s

GT

2
xt+s

)
≤ −1. (2.4.10)

Consequently the denominator of the Zeger estimator is an overestimate of
T−s∑
t=1

µtµt+s
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while the numerator is an underestimate of
T−s∑
t=1

(yt − µt) (yt+s − µt+s). Taken to-

gether, these inequalities clearly suggest that γ̂ (s) is a signi�cantly biased estimator

of γ (s). There are several di�erent methods of reducing this bias, most of which re-

place Zeger's estimator by a sequence modi�ed using prior covariance estimates. One

such method is the direct modi�cation of the Zeger estimator developed in Davis et

al.(2000). Under the assumption of asymptotic normality,

µ̂tµ̂t+s exp

(
− (xs + xt)

T ĜT

2
(xs + xt)

)
is an asymptotically unbiased estimate of µtµt+s, with asymptotic parameter covari-

ance matrix estimated by ĜT =
[
Ω̂

−1

1T + Ω̂
−1

1T Ω̂11T Ω̂
−1

1T

]
where Ω1T =

T∑
t=1

xtx
T
t µ̂t and

Ω11T =
τ∑
t=1

τ∑
s=1

xtx
T
s µ̂tµ̂sγ̂ (t− s). Using this and similar approximations gives us a

sequence of adjusted estimators

γ̂UB (s) =

T−s∑
t=1

(yt − µ̂t) (yt+s − µ̂t+s)

T−s∑
t=1

µ̂tµ̂t+sgt,s

−

T−s∑
t=1

µ̂tµ̂t+sgt,s

(
1− ex

T
t

ĜT
2

xt − ex
T
t+s

ĜT
2

xt+s + e(xs+xt)
T ĜT

2
(xs+xt)

)
T−s∑
t=1

µ̂tµ̂t+sgt,s

where gt,s = exp
(
− (xs + xt)

T ĜT

2
(xs + xt)

)
and ĜT is the parameter covariance

matrix estimate computed using the Zeger estimates γ̂ (s) and used to adjust the

current estimates.

Another alternative to the Zeger estimators, which are rescalings of the sample covari-

ance function, is the approximated sample covariance function γ̃ (s) =
T−s∑
t=1

ε̂tεt+s − 1

of the latent process, calculated using some estimator. ε̂tεt+s of εtεt+s. As such a co-

variance estimator is a sum of quotients rather than a quotient function of two sums,

its moments can theoretically be calculated much more easily than those of Zeger's

estimator. The standard moments estimate ε̂tε̂t+s =
ytyt+s
µ̂tµ̂t+s

could be used, or if

empirical evidence suggests signi�cant bias, replaced by the approximately unbiased
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estimate ε̃tεt+s =
ytyt+s exp

(
−
(
xTt + xt+s

)
ĜT

2
(xt + xt+s)

)
µ̂tµ̂t+s

, with ĜT as de�ned in

the adjustments to Zeger's estimator. As

E

(
1

µ̂tµ̂t+s

)
=

1

µtµt+s
exp

((
xTt + xt+s

) ĜT

2
(xt + xt+s)

)
,

this would remove nearly all of the bias from the above estimator (as the variance

matrix used is an estimate itself, we can not be certain that ε̃tεt+s is completely

unbiased).



Chapter 3

Asymptotic results for the GLM and

DFT estimators

3.1 Introduction

The main topic of this chapter will be the properties of the mean-parameter and

frequency estimators. Taking the simple model with trend and intercept regressors

only, the consistency of a GLM estimator of θ which maximises a pseudo-likelihood

function will be established and then the asymptotic normality of the estimator will

be established via characteristic functions.

In Section 3.4, an estimator of ω will be introduced and its convergence to the true

frequency value veri�ed. This estimator is derived from the estimated covariance

function of the latent process and we will utilise the asymptotic distribution of the

mean estimator to prove pointwise convergence. Sections 3.2, 3.3 and 3.4 will also

supply us with the key results, using Chebychev's inequality and Abel's lemma, which

will signi�cantly simplify the analysis of other, more complicated models.

The extension of the properties of the mean-parameter estimator to models with re-

gressors other than trend and intercept will be studied in the �nal section. Covariates

such as population size and weather statistics will often be very informative when

modelling time series of counts, but the randomness of the values involved, opposed

to a deterministic covariate like time, means that the results do not automatically

43
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follow.

3.2 Convergence of θ̂GLM

The �rst asymptotic result which we shall establish is the pointwise convergence of

θ̂GLM to the true parameter vector θ0 where θ̂GLM is the vector which maximises the

pseudo-log-likelihood function

lT (θ, α) =
1

T

T∑
t=1

[
yt
(
xTt θ + f(yt−1, α)

)
− exp

(
xTt θ + f(yt−1, α)

)]
Maximum likelihood estimates are found using a Fisher scoring algorithm. This is

very similar to the methodology used to estimate the parameters in a generalised

linear model with canonical link function (see McCullagh and Nelder (1989)) so the

parameter estimators and the functions f
(
θ̂
)
which are used as estimators of f (θ)

will be referred to as GLM estimators. After establishing that θ0 is the unique

minimiser of E [lT (θ)], it is su�cient to prove that sup
∣∣∣lT (θ̂)− E [lT (θ0)]

∣∣∣ P−→ 0,

known as uniform (rather than pointwise) convergence in probability

This shall be achieved by proving that lT (θ) is both pointwise convergent in proba-

bility to E [lT (θ)] and is equicontinuous in probability.

Let lT (θ) =
1

T

T∑
t=1

[
ytx

T
t θ − exp

(
xTt θ

)]
. Then

E (lT (θ)) = l̃ (θ) =
1

T

T∑
t=1

[
E (yt)x

T
t θ − exp

(
xTt θ

)]
=

1

T

T∑
t=1

[
exp

(
xTt θ0

)
xTt θ − exp

(
xTt θ

)]
. (3.2.1)

This is maximised by θ solving
1

T

∑T
t=1 x

T
t

(
exp

(
xTt θ0

)
− exp

(
xTt θ

))
= 0.

This is clearly the case when θ = θ0 Let θ̂T be the value which maximises lT (θ).
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V (lT (θ)) =
1

T 2
V

(
T∑
t=1

ytx
T
t θ − exp

(
xTt θ

))

=
1

T 2
E

(
T∑
t=1

(
yt − exp

(
xTt θ0

))
xTt θ

)2

=
1

T 2
E

(
T∑
t=1

T∑
s=1

(
ys − exp

(
xTs θ0

)) (
yt − exp

(
xTt θ0

))
xTs θx

T
t θ

)

=
1

T 2

T∑
t=1

T∑
s=1

Cov(yt, ys)x
T
s θx

T
t θ

=
1

T 2

T∑
t=1

T∑
s=1

xTs θx
T
t θ exp

(
xTs θ0

)
exp

(
xTt θ0

) cos(2(t− s)ω)

2

+
1

T 2

T∑
t=1

(
xTt θ

)2
exp

(
xTt θ0

)
=

1

2T 2

T∑
t=1

T∑
s=1

xTs θx
T
t θ exp

(
xTs θ0

)
exp

(
xTt θ0

)
×
(
cos(2ωt) cos(2ωs) + sin(2ωt) sin(2ωs)

)
+

1

T 2

T∑
t=1

(
xTt θ

)2
exp

(
xTs θ0

)
=

1

T 2

T∑
t=1

(
xTt θ

)2
exp

(
xTt θ0

)
+

(
1√
2T

T∑
t=1

xTt θ exp
(
xTt θ0

)
sin(2ωt)

)2

+

(
1√
2T

T∑
t=1

xTt θ exp
(
xTt θ0

)
cos(2ωt)

)2

. (3.2.2)

For xTt θ = α + βt/T, let a = |α| and b = |β|. Then

1

T 2

T∑
t=1

(
xTt θ

)2
exp

(
xTt θ0

)
≤ 1

T 2

T∑
t=1

(a+ b)2 exp (a0 + b0)

=
(a+ b)2 exp (a0 + b0)

T
−→ 0 as T −→ ∞. (3.2.3)

Using Abel's Lemma:

T∑
t=1

f(t)g(t) = f(T )
T∑
t=0

g(t)− f0g0 −
T−1∑
t=0

(
(f(t+ 1)− f(t))

t∑
s=0

g(s)

)
(3.2.4)
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with ft = xTt θ exp
(
xTt θ0

)
and gt = cos(2ωt)

T∑
t=1

xTt θ exp
(
xTt θ0

)
cos (2ωt)

= (α + β) exp (α0 + β0)
T∑
t=0

cos (2ωt)− α exp (α0)

−
T−1∑
t=0

[(
eα0+β0(t+1)/T (α + β(t+ 1)/T )− eα0+β0t/T (α + βt/T )

) t∑
s=0

cos (2ωs)

]
(3.2.5)

(α + β) exp (α0 + β0)
T∑
t=0

cos (2ωt) = (α + β) exp (α0 + β0)
sin ((T + 1)ω) cos (Tω)

sin (ω)

T−1∑
t=0

[(
eα0+β0(t+1)/T (α + β(t+ 1)/T )− eα0+β0t/T (α + βt/T )

) t∑
s=0

cos (2ωs)

]

=
T−1∑
t=0

exp (α0 + β0t/T ) ((α + βt/T ) (exp (β0/T )− 1) + β/T exp (β0/T ))

×sin ((t+ 1)ω) cos (ωt)

sin (ω)

≤ 1

sin(ω)

T−1∑
t=0

exp (α0 + β0t/T ) ((α+ βt/T ) (exp (β0/T )− 1) + β/T exp (β0/T ))

∝
T−1∑
t=0

exp (α0 + β0t/T ) ((α + βt/T ) (exp (β0/T )− 1) + β/T exp (β0/T ))

=
(
eβ0/T − 1

) T−1∑
t=0

(α + βt/T ) eα0+β0t/T + β/Teβ0/T
T−1∑
t=0

eα0+β0t/T

=
(
eβ0/T − 1

)
eα0

(
α
eβ0 − 1

eβ0/T − 1
+

eβ0

eβ0/T − 1
+
eβ0/T

(
eβ0 − 1

)
T (eβ0/T − 1)

2

)

+
βeα0+β0/T

T

(
eβ0 − 1

eβ0/T − 1

)
= eα0

(
α
(
eβ0 − 1

)
− eβ0

)
+

(β + 1) eα0+β0/T

T

(
eβ0 − 1

eβ0/T − 1

)
−→ eα0

(
α
(
eβ0 − 1

)
− eβ0

)
+

(β + 1) eα0

β

(
eβ0 − 1

)
as T −→ ∞. (3.2.6)
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Thus

1√
2T

T∑
t=1

(α + βt/T ) eα0+β0t/T cos (2ωt)

∝ −αeα0

√
2T

+
1√
2T

T−1∑
t=0

eα0+β0t/T
(
(α + βt/T )

(
eβ0/T − 1

)
+ β/Teβ0/T

)
+ (α + β) eα0+β0

sin ((T + 1)ω) cos (Tω)√
2T sin (ω)

∝ 1√
2T

[
− α exp (α0) + (α + β) exp (α0 + β0)

sin ((T + 1)ω) cos (Tω)

sin (ω)

+ eα0
(
α
(
eβ0 − 1

)
− eβ0

)
+

(β + 1) eα0+β0/T

β0

(
eβ0 − 1

) ]
−→ 0 as T −→ ∞ (3.2.7)

as all terms inside the square brackets are �xed and �nite. By the same reasoning,

1√
2T

T∑
t=1

(α + βt/T ) exp (α0 + β0t/T ) sin (2ωt) −→ 0

Thus for xTt θ = α+ βt/T, V (lT (θ)) −→ 0 as T −→ ∞

Using Chebychev's Inequality, P (|X − E (X) | > ϵ) ≤ V (X)

ϵ2
, lT (θ) is pointwise

convergent in probability to l̃ (θ) or in other words,
∣∣∣lT (θ)− l̃ (θ)

∣∣∣ −→
P

0 ∀θ =

(α, β) ∈ R2.

Similarly, for the score function ∆l (θ) =
1

T

T∑
t=1

xt
(
yt − exp

(
xTt θ

))
,

V (∆l (θ)) =
1

T 2

T∑
t=1

T∑
s=1

xtx
T
s Cov (yt, ys)

=
1

2T 2

T∑
t=1

T∑
s=1

 1 s/T

t/T st/T 2

 exp (α0 + β0) exp (α0 + β0) cos (2 (t− s)ω)

+
1

T 2

T∑
t=1

 1 t/T

t/T t2/T 2

 exp (2 (α0 + β0))

=
1

2T 2

[(
T∑
t=1

(
1

t/T

)
eα0+β0 cos (2tω)

)(
T∑
s=1

(
1

s/T

)
eα0+β0 cos (2sω)

)T

+
T∑
t=1

 1 t/T

t/T t2/T 2

 exp (2 (α0 + β0))

]
. (3.2.8)

Evaluating each term as slight adjustments to those of V (lT (θ)), it is clear that

V (∆lT (θ)) −→ 0 as T −→ ∞.
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Let JT =
1

T

T∑
t=1

(
1

t/T

)
yt =

(
J1T
J2T

)
and E (JT ) = J̄T =

1

T

T∑
t=1

(
1

t/T

)
µt =

(
J̄1T
J̄2T

)
.

JT ≥ ∆lT (θ) , V (JT ) = V (∆lT (θ)) and JT ≥ 0 ∀T . Using basic axioms of probabil-

ity, Chebychev's Inequality and the triangle inequality,

∀k > 0, P
(
|JT | >

∣∣J̄T ∣∣+ k
)

= P
(
|JT | −

∣∣J̄T ∣∣ > k
)
< P

(∣∣JT − J̄T
∣∣ > k

)
= P

(∣∣JT − J̄T
∣∣2 > k2

)
≤ P

((
J1T − J̄1T

)2
>
k2

2

)
+ P

((
J2T − J̄2T

)2
>
k2

2

)
≤ 2V (J1T )

k2
+

2V (J2T )

k2
−→ 0

=⇒ P (|JT | > M) <
2V (J1T )(
M −

∣∣J̄1T ∣∣)2 +
2V (J2T )(
M −

∣∣J̄2T ∣∣)2
(3.2.9)

for all M >
∣∣J̄T ∣∣ .

P (|lT (θ1)− lT (θ2)| > ϵ) ≤ P (sup |∆lT (θ)| · |θ1 − θ2| > ϵ) (by MVT)

≤ P (sup |θ1 − θ2| sup |∆lT (θ)| > ϵ)

≤ P (sup |θ1 − θ2| |JT | > ϵ)

= P

(
|JT | >

ϵ

sup |θ1 − θ2|

)
≤ 2V (J1T )(

ϵ

sup |θ1 − θ2|
−
∣∣J̄1T ∣∣)2 +

2V (J2T )(
ϵ

sup |θ1 − θ2|
−
∣∣J̄2T ∣∣)2 .

(3.2.10)

A function f de�ned over a range of values x ∈ X is said to be equicontinuous in

probability if the following condition is satis�ed:

For any ϵ > 0, there exists δ > 0 such that if |x1 − x2| ≤ δ,

then P (|f(x1)− f(x2)| > ϵ) −→ 0.

Let

(
A

B

)
= sup

(
α

β

)
and J̃T =

(
J̃T1
J̃T2

)
=

1

T

T∑
t=1

(
1

t/T

)
eA+Bt/T . For any ϵ > 0, let

δ =
ϵ

2 sup |J̃T1|
=

ϵ

2 lim
T→∞

(J̃T1)
as J̃T1 is monotonically increasing. Denote lim

T→∞
(J̃T1)

by J∞ =
eA
(
eB − 1

)
B

.
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For all θ1, θ2 such that |θ1 − θ2| < δ

ϵ

δ
<

ϵ

sup |θ1 − θ2|
=⇒ 2V (J1T )(

ϵ

sup |θ1 − θ2|
−
∣∣J̄1T ∣∣)2 <

2V (J1T )( ϵ
δ
−
∣∣J̄1T ∣∣)2

=
2V (J1T )(

2J∞ −
∣∣J̄1T ∣∣)2 . (3.2.11)

For all 0 < 1 ≤ T, t/T ≤ 1 and µt > 0, so J̄T2 < J̄T1. Thus
(
2J∞ −

∣∣J̄1T ∣∣)2 <(
2J∞ −

∣∣J̄1T ∣∣)2 < (2J∞ −
∣∣J̄2T ∣∣)2

Putting all these inequalities together, we have

P (|lT (θ1)− lT (θ2)| > ϵ) ≤ 2V (J1T )(
ϵ

sup |θ1 − θ2|
−
∣∣J̄1T ∣∣)2 +

2V (J2T )(
ϵ

sup |θ1 − θ2|
−
∣∣J̄2T ∣∣)2

≤ 2V (J1T )( ϵ
δ
− J̄1T

)2 +
2V (J1T )( ϵ
δ
− J̄1T

)2
=

2V (J1T )(
2J∞ − J̄1T

)2 +
2V (J1T )(

2J∞ − J̄1T
)2

≤ 2 (V (J1T ) + V (J2T ))(
2J∞ − J̄1T

)2 ≤ 2 (V (J1T ) + V (J2T ))

J2
∞

= 2 (V (J1T ) + V (J2T ))
B2

e2A (eB − 1)2

−→ 0 as T −→ ∞. (3.2.12)

Thus for any ϵ > 0, there exists δ =
ϵ

2J∞
> 0 such that if |θ1 − θ2| ≤ δ,

then P (|l (θ1)− l (θ2)| > ϵ) −→ 0.

Therefore the sequence lT (θ) is equicontinuous in probability, it is pointwise con-

vergent in probability to l̃T (θ) and the parameter space Θ of θ is compact. This

is su�cient to establish uniform convergence of lT (θ), as stated in Berkes et. al.

(2003), Lemma 5.4. Thus sup
∣∣∣lT (θ)− l̃T (θ)

∣∣∣ P−→ 0. Since

lT (θ0) ≤ lT

(
θ̂
)

P−→ l̃T

(
θ̂
)
≤ l̃T (θ0)

=⇒ lT (θ0)− l̃T (θ0) ≤ lT

(
θ̂
)
− l̃T (θ0) ≤ lT

(
θ̂
)
− l̃T

(
θ̂
)

=⇒
∣∣∣lT (θ̂)− l̃T (θ0)

∣∣∣ ≤ max
{∣∣∣lT (θ̂)− l̃T

(
θ̂
)∣∣∣ , ∣∣∣lT (θ0)− l̃T (θ0)

∣∣∣}
≤ sup

∣∣∣lT (θ)− l̃T (θ)
∣∣∣ P−→ 0

=⇒
∣∣∣lT (θ̂)− l̃T (θ0)

∣∣∣ P−→ 0. (3.2.13)
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As the minimum of l̃T (θ) is unique, it is clear from this that θ̂
P−→ θ0. Therefore θ̂

is a consistent estimator of the intercept and trend parameters.

3.3 Normality of θ̂GLM

We shall now establish that
√
T θ̂GLM converges in distribution to a Gaussian random

variable. As θ̂GLM is both a vector and the outcome of an iterative algorithm, stages

will be taken to simplify the task. Using the Mean Value theorem, we will �rst show

that asymptotic normality of a rescaled score function is a su�cient condition for

asymptotic normality of
√
T θ̂GLM . Asymptotic normality of any scalar projection

of this score function will be proven by computing the limit of the characteristic

function, after verifying that this in turn is su�cient to prove that the score function

is asymptotically Gaussian. We abbreviate θ̂GLM by θ̂ throughout

Consider the score function ST (θ) =
1

T

T∑
t=1

xt (yt − µt), where xt =

 1

t/T

. By

the mean value theorem,

√
T
(
θ̂ − θ0

)
∇ST (θ1) =

√
T
(
ST

(
θ̂
)
− ST (θ0)

)
= −

√
TST (θ0)

=⇒
√
T
(
θ̂ − θ0

)
= (−∇ST (θ1))

−1
√
TST (θ0) (3.3.1)

where ∇ST (θ1) = − 1

T

T∑
t=1

xtx
T
t exp

(
xTt θ1

)
and θ1 lies between θ0 and θ̂. Since

θ̂
P−→ θ0, by the sandwich theorem θ1

P−→ θ0. Also, for all θ, using the integral

approximation theorem, we have that

∇ST (θ) −→M (θ) =

∫ 1

0
eα+βxdx

∫ 1

0
xeα+βxdx∫ 1

0
eα+βxdx

∫ 1

0
xeα+βxdx

 as T −→ ∞. (3.3.2)

Therefore by the continuous mapping theorem,

∇ST (θ1)
P−→M (θ0) as T −→ ∞. (3.3.3)
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This result is easily proven using Chapter 5 of Billingsley (1968).

We proceed by proving that
√
TST (θ0) converges in distribution to a Gaussian ran-

dom variable S∗
T (θ0) as T −→ 0. Then by Billingsley (1968), Theorem 4.4,

√
T
(
θ̂ − θ0

)
= (−∇ST (θ1))

−1
√
TST (θ0)

D−→ −M (θ0)
−1 S∗

T (θ0) . (3.3.4)

By the Cramer-Wold theorem,
√
TST (θ0) is asymptotically Gaussian if and only

if any linear projection of
√
TST (θ), PT (θ) = 1√

T

T∑
t=1

(γ, δ)xt (yt − µt), is too. To

prove asymptotic normality, we shall examine the characteristic function φST
(λ) =

E (exp (iλPT (θ))) .

E (exp (iλPT (θ))) = E (E (exp (iλPT (θ)) | ϕ))

= E

(
1√
T

T∏
t=1

E (exp ((γ + δt/T ) iλ (yt − µt)) | ϕ)

)
. (3.3.5)

Studying the inner expectation,

T∏
t=1

E (exp ((γ + δt/T ) iλ (yt − µt)) | ϕ)

=
T∏
t=1

exp

[
µtεt

(
exp

(
iλ

(
γ + δt/T√

T

))
− 1

)
− iλ

(
γ + δt/T√

T

)
µt

]

= exp

[
T∑
t=1

(
exp

(
iλ

(
γ + δt/T√

T

))
− 1− iλ

(
γ + δt/T√

T

))
µt

]

× exp

[
T∑
t=1

(
exp

(
iλ

(
γ + δt/T√

T

))
− 1

)
µt cos (2 (ωt+ ϕ))

]
. (3.3.6)

It follows that

E (exp [iλPT (θ)])

= exp

[
T∑
t=1

(
exp

(
iλ

(
γ + δt/T√

T

))
− 1− iλ

(
γ + δt/T√

T

))
exp (α + βt/T )

]
×

E

{
exp

[
T∑
t=1

(
exp

(
iλ

(
γ + δt/T√

T

))
− 1

)
exp (α + βt/T ) cos (2 (ωt+ ϕ))

]}
.

(3.3.7)
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Starting with the latter term on the right-hand side of (3.3.7), we have that

T∑
t=1

(
exp

(
iλ

(
γ + δt/T√

T

))
− 1

)
exp (α + βt/T ) cos (2 (ωt+ ϕ))

=

[(
e

λ√
T
(γ+δ+δ/T )

1 + e2β/T e2iλδ/T
√
T − 2eβ/T eiλδ/T

√
T cos (2ω)

− 1

1 + e2β/T − 2eβ/T cos (2ω)

)
eβ+β/T cos (2 (ϕ+ Tω))

−
(

e
λ√
T
(γ+δ)

1 + e2β/T e2iλδ/T
√
T − 2eβ/T eiλδ/T

√
T cos (2ω)

− 1

1 + e2β/T − 2eβ/T cos (2ω)

)
eβ cos (2 (ϕ+ (T + 1)ω))

−
(

e
λ√
T
(γ+δ/T )

1 + e2β/T e2iλδ/T
√
T − 2eβ/T eiλδ/T

√
T cos (2ω)

− 1

1 + e2β/T − 2eβ/T cos (2ω)

)
eβ/T cos (2ϕ)

+

(
1

1 + e2β/T e2iλδ/T
√
T − 2eβ/T eiλδ/T

√
T cos (2ω)

− 1

1 + e2β/T − 2eβ/T cos (2ω)

)
cos (2 (ϕ+ ω))

]
. (3.3.8)

The above expression converges to zero for all values of α, β, γ, δ, λ and ϕ, so we can

conclude that

E

{
exp

[
T∑
t=1

(
exp

(
iλ

(
γ + δt/T√

T

))
− 1

)
exp (α + βt/T ) cos (2 (ωt+ ϕ))

]}
−→ exp (0) = 1 as T −→ ∞. (3.3.9)
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For all su�ciently large T,

T∑
t=1

[
exp

(
λi (γ + δt/T )√

T

)
− 1− λi (γ + δt/T )√

T
− −λ2 (γ + δt/T )2

2T

]
× exp (α + βt/T )

=
T∑
t=1

(
∞∑
k=3

(λi (γ + δt/T ))k

T
k
2 k!

)
exp (α + βt/T )

≤
T∑
t=1

∣∣∣∣ λ√T
(
γ +

δt

T

)∣∣∣∣3 exp (α + βt/T )

=
T∑
t=1

1

T
√
T

∣∣∣∣∣λ3
(
γ +

δt

T

)3
∣∣∣∣∣ exp (α + βt/T )

≤ 1

T
√
T

T∑
t=1

|λ (γ + δ) |3 exp (α + βt/T )

≤ 1

T
√
T

T∑
t=1

|λ (γ + δ) |3 exp |α + β|

=
|λ (γ + δ) |3 exp |α + β|√

T
−→ 0 as T −→ ∞. (3.3.10)

Thus ∣∣∣∣∣
T∑
t=1

[
exp

(
λi (γ + δt/T )√

T

)
− 1− λi (γ + δt/T )√

T

]
exp (α + βt/T )

−
T∑
t=1

−λ2 (γ + δt/T )2

2T
exp (α + βt/T )

∣∣∣∣∣
−→ 0 as T −→ ∞. (3.3.11)

By the Integral Approximation Rule for series, the last expression

T∑
t=1

−λ2 (γ + δt/T )2

2T
exp (α+ βt/T )
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converges to

1∫
0

−λ2 (γ + δx)2

2
exp (α + βx) dx =

1∫
0

λ2 (γ + δx)2

2
exp (α + βx) dx

= −λ
2 exp (α)

2

[(γ + δx)2

β
exp (βx)

]1
0

−
1∫

0

2δ (γ + δx)

β
exp (βx) dx


= −λ

2 exp (α)

2

[((γ + δx)2

β
− 2δ (γ + δx)

β2

)
exp (βx)

]1
0

+

1∫
0

2δ2

β2
exp (βx) dx


= −λ

2 exp (α)

2

[(
(γ + δx)2

β
− 2δ (γ + δx)

β2
+

2δ2

β3

)
exp (βx)

]1
0

=
λ2eα

2

(
2δ (γ + δ)− β (γ + δ)2

β2
eβ +

2δ2

β3

(
1− eβ

)
+
βγ2 − 2δγ

β2

)
. (3.3.12)

The exponential of this is the characteristic function of a Normal random variable

with zero mean and variance

eα

β3

((
2δβ (γ + δ)− β (γ + δ)2

)
eβ + 2δ2

(
1− eβ

)
+ β

(
βγ2 − 2δγ

))
.

3.4 Consistency of the latent ACF estimator and its

DFT

In Section 2.4, we investigated the method-of-moments estimator of the latent-process

covariance function proposed in Zeger (1988), after obtaining good empirical evidence

for the maximiser of a DFT of these estimates as an estimator for ω. An alternative

to Zeger's covariance estimator is

γ̄(s) =
1

T − s

T−s∑
t=1

(
yt
µ̂t

− 1

)(
yt+s
µ̂t+s

− 1

)
.

The real part of the DFT of the resulting covariance estimates, which we shall denote

the �real Fourier transform� (RFT) appears very similar to that of Zeger's covariance

estimates, while the structure of γ̄(s) as the sample covariance of variable ratios,

rather than the ratio of two sample covariances estimator, makes mean and variance

computation much more straightforward.
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Although, due to the log-normal distribution of {µ̂t}, the covariance estimates

will not be unbiased, we shall show that the maximiser ω̂ of the RFT of {γ̂(s)} still

converges in probability to the true frequency ω.

Let

R̃T (θ) =
1

τ

τ−1∑
s=0

(
1

T − s

T−s∑
t=1

ε̃tε̃t+s

)
cos(θs),

R̄T (θ) =
1

τ

τ−1∑
s=0

(
1

T − s

T−s∑
t=1

ε̄tε̄t+s

)
cos(θs)

and

RT (θ) =
1

2τ

τ−1∑
s=0

cos(2ωs) cos(θs)

where ε̃t = yt exp
(
−xTt θ0

)
− 1 and ε̄t = yt exp

(
−xTt θ̂

)
− 1.

These three summations can be thought of as the RFTs of the covariance estimates

using the true and estimated means respectively and the RFT of the actual latent-

process covariances.

After showing that RT (θ) is uniquely maximised at ω, it is su�cient to prove

that R̄T (θ) converges in probability to RT (θ). This in turn will be established by �rst

proving that
∣∣R̄T (θ)−RT (θ)

∣∣ −→
P

0 using Chebychev's inequality, then proving that∣∣∣R̄T (θ)− R̃T (θ)
∣∣∣ −→

P
0 via a step-by-step process using the asymptotic normality of

θ̂GLM .

We shall �rst prove that |R̃T (θ)−R(θ)| −→
P

0 and hence that

R̃T (θ) −→
P

r(θ) = lim
τ→∞

(RT (θ)) =

{
0 θ ̸= 2ω

1
2
θ = 2ω

E
(
R̃T (θ)

)
=

1

τ

τ−1∑
s=0

(
1

T − s

T−s∑
t=1

E (ε̃tε̃t+s)

)
cos(θs)

=
1

τ

τ−1∑
s=0

(
1

T − s

T−s∑
t=1

E [(yt − µt) (yt+s − µt+s)]

µtµt+s

)
cos(θs) (3.4.1)

=
1

τ

τ−1∑
s=0

(
1

T − s

T−s∑
t=1

cos(2ωs)

2

)
cos(θs) =

1

2τ

τ−1∑
s=0

cos(2ωs) cos(θs).
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Thus R̃T (θ) is an unbiased estimator of R(θ)

1

2τ

τ−1∑
s=0

cos(2ωs) cos(θs) =
1

4τ

τ−1∑
s=0

cos ((2ω − θ)s) + cos ((2ω + θ)s)

=
1

4τ

[
sin
(
τ
2
(2ω − θ)

)
cos
(
τ−1
2
(2ω − θ)

)
sin
(
2ω−θ

2

) +
sin
(
τ
2
(2ω + θ)

)
cos
(
τ+1
2
(2ω + θ)

)
sin
(
2ω+θ

2

) ]

≈

 0 if θ ̸= 2ω

1
2

if θ = 2ω
(3.4.2)

This approximation is exact if θ and 2ω are both multiples of
2π

τ
and a limit as

τ −→ ∞ otherwise Hence R(θ) = E
(
R̃T (θ)

)
is maximised at θ = 2ω

V
(
R̃T (θ)

)
=

1

τ 2

τ−1∑
s=0

τ−1∑
r=0

{
T−s∑
t=1

T−r∑
p=1

(
E (ε̃tε̃t+sε̃pε̃p+r)

(T − s)(T − r)
− cos(2ωs) cos(2ωr)

4

)}
× cos(θs) cos(θr). (3.4.3)

Given that t, t+ s, p and p+ r are all di�erent,

E (ε̃tε̃t+sε̃pε̃p+r)

= E
(
E ( ε̃tε̃t+sε̃pε̃p+r|ϕ)

)
=

1

µtµt+sµpµp+r
E
[
E ((yt − µt) (yt+s − µt−s) (yp − µp) (yp+r − µp+r)|ϕ)

]
= E

(
cos(2ωt+ 2ϕ) cos(2ω(t+ s) + 2ϕ) cos(2ωp+ 2ϕ) cos(2ω(p+ r) + 2ϕ)

)
=

1

4
E
[
(cos(4ωt+ 2ωs+ 4ϕ) + cos(2ωs))(cos(4ωp+ 2ωs+ 4ϕ) + cos(2ωr))

]
=

1

8
E
[
2 cos(2ωs) cos(2ωr) + cos(4ω(t− p) + 2ω(s− r))

]
=

cos(2ωs) cos(2ωr)

4
+

cos(4ω(t− p) + 2ω(s− r))

8
. (3.4.4)

Similar calculations for the cases where t = p, t + s = p + r, t = p + r or t + s = p,

yields
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V
(
R̃T (θ)

)
=

1

τ 2

τ−1∑
s=0

τ−1∑
r=0

(
T−s∑
t=1

T−r∑
p=1

cos 2(2(t− p) + s− r)ω

8
+

T−s−r∑
t=1

cos 2(s+ r)

2µt+s

+
T−s−r∑
p=1

cos 2(s+ r)ω

2µp+r
+

T−max(s,r)∑
t=1

cos 2(s− r)ω

2

(
1

µt
+

1

µt+s

))

× cos(θs) cos(θr)

(T − s)(T − r)

+
1

τ 2

τ−1∑
s=0

T−s∑
t=1

(2 + cos(2ωs)) cos2(θs)

2µtµt+s(T − s)2
. (3.4.5)

Considering the last term �rst,

1

τ 2

τ−1∑
s=0

T−s∑
t=1

(2 + cos(2sω)) cos2(sθ)

2µtµt+s(T − s)2

=
1

τ 2

τ−1∑
s=0

T−s∑
t=1

(2 + cos(2sω)) cos2(sθ)

(T − s)2
e−α−βt/T e−α−β(t+s)/T

≤ 1

τ 2

τ−1∑
s=0

T−s∑
t=1

3e2(|α|+|β|)

2(T − s)2

=
1

τ 2

τ−1∑
s=0

3e2(|α|+|β|)

2(T − s)

≤ 3e2(|α|+|β|)

2τ(T − τ)
−→ 0 as T −→ ∞. (3.4.6)

Using the fact that for any ψ ∈ R and s = 1, 2, . . . , τ,

∣∣∣∣ cosψ

µt(T − s)

∣∣∣∣ ≤ e|α|+|β|

T − τ
, we have
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that

1

(T − s)(T − r)

(
T−max(s,r)∑

t=1

cos 2(s− r)

2

(
1

µt
+

1

µt+s

)

+
T−s−r∑
t=1

cos 2(s+ r)

2µt+s
+

T−s−r∑
p=1

cos 2(s+ r)

2µp+r

)

≤ (T −max(s, r))e|α|+|β| + (T − s− r)e|α|+|β|

(T − s)(T − r)

≤ 2e|α|+|β|

T − τ
−→ 0

1

τ 2

τ−1∑
s=0

τ−1∑
r=0

(
T−max(s,r)∑

t=1

cos 2(s− r)

2

(
1

µt
+

1

µt+s

)

+
T−s−r∑
t=1

cos 2(s+ r)

2µt+s
+

T−s−r∑
p=1

cos 2(s+ r)

2µp+r

)
cos(θs) cos(θr)

(T − s)(T − r)

≤ 1

τ 2

τ−1∑
s=0

τ−1∑
r=0

2e|α|+|β|

T − τ

=
2e|α|+|β|

T − τ
−→ 0 as T −→ ∞ . (3.4.7)

Finally,
T−s∑
t=1

T−r∑
p=1

cos 2(2(t− p) + s− r)ω

8
=

sin 2(T − r)ω sin 2(T − s)ω

8 sin2(2ω)
≤ 1

8 sin2(2ω)
.

This implies that

1

τ 2

τ−1∑
s=0

τ−1∑
r=0

(
T−s∑
t=1

T−r∑
p=1

cos 2(2(t− p) + s− r)

8

)
cos(θs) cos(θr)

(T − s)(T − r)

≤ 1

τ 2

τ−1∑
s=0

τ−1∑
r=0

1

8(T − s)(T − r) sin2(2ω)

≤ 1

8(T − τ)2 sin2(2ω)
−→ 0

as T −→ ∞. (3.4.8)

To establish the convergence in probability of |R̄T (θ)− R̃T (θ)| to 0, it is su�cient

to prove that for any ϵ > 0, P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ
)
−→ 0 as T −→ ∞. This is

best accomplished via a series of short steps.
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Step 1: Let MT = sup {y1, y2, . . . , yT}. For any κ > 0,

P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ
)

= P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ ∩MT ≤ T κ
)

+ P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ ∩MT > T κ
)

≤ P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ ∩MT ≤ T κ
)
+ P (MT > T κ)

= P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ |MT ≤ T κ
)
P (MT ≤ T κ)

+ P (MT > T κ) . (3.4.9)

Step 2: Let Z̃ ∼ Po(λ) where λ = 2eα+|β|.

Then for all 0 < t ≤ T , 2 exp(α + βt/T ) ≤ λ.

Therefore for all k > 0 and 0 < ϕ < 2π, P (yt > k | ϕ) ≤ P
(
Z̃ > k

)
.

By Markov's inequality,

P (yt > T κ | ϕ) ≤ P
(
Z̃ > T κ

)
≤

E
(
sZ̃
)

sTκ =
exp ((s− 1)λ)

sTκ . (3.4.10)

Taking s = 2, P (yt > T κ | ϕ) ≤ exp (λ)

2Tκ

Let M̃T = sup
{
Z̃t

}
P
(
M̃T > x

)
= P

(
T∪
t=1

{
Z̃t > x

})
≤

T−s∑
t=1

P
(
Z̃t > x

)
= TP

(
Z̃ > x

)(
≤ T

2x
eλ
)
. (3.4.11)

Thus for all ϕ, P (MT > T κ|ϕ) ≤ P
(
M̃T > T κ

)
which gives

P (MT > T κ) =

∫ 2π

0

P (MT > T κ|ϕ) f(ϕ).dϕ

≤
∫ 2π

0

P
(
M̃T > T κ

)
f(ϕ).dϕ

= P
(
M̃T > T κ

)∫ 2π

0

f(ϕ).dϕ

= P
(
M̃T > T κ

)
−→ 0 as T −→ ∞. (3.4.12)
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Thus P (MT > T κ) ≤ P
(
M̃T > T κ

)
, so P (MT > T κ) ≤ T

2Tκ e
λ −→ 0 as T −→ ∞.

Step 3: Conditioning on MT ≤ T κ∣∣∣R̄T (θ)− R̃T (θ)
∣∣∣ ≤ 1

τ

τ−1∑
s=0

1

T − s

T−s∑
t=1

|ε̄tε̄t+s − ε̃tε̃t+s|

≤ 1

τ

τ−1∑
s=0

1

T − s

T−s∑
t=1

ytyt+s

∣∣∣e−(xt+xt+s)θ̂ − e−(xt+xt+s)θ0

∣∣∣
+

1

τ

τ−1∑
s=0

1

T − s

T−s∑
t=1

{
yt

∣∣∣e−xtθ̂ − e−xtθ0

∣∣∣+ yt+s

∣∣∣−ext+sθ̂ − ext+sθ0

∣∣∣}
(if MT ≤ T κ) ≤ 1

τ

τ−1∑
s=0

1

T − s

T−s∑
t=1

T 2κ
∣∣∣e−(xt+xt+s)θ̂ − e−(xt+xt+s)θ0

∣∣∣
+

1

τ

τ−1∑
s=0

1

T − s

T−s∑
t=1

T κ
{∣∣∣e−xtθ̂ − e−xtθ0

∣∣∣+ ∣∣∣−ext+sθ̂ − ext+sθ0

∣∣∣}
= NT1 +NT2 +NT3

= NT . (3.4.13)

Note that

P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ
∣∣∣MT ≤ T κ

)
P (MT ≤ T κ)

≤ P (NT > ϵ)P (MT ≤ T κ) ≤ P (NT > ϵ) . (3.4.14)

Step 4: Proof of P (NT > ϵ) −→ 0.

For all 0 < ξ < 1
4
,

T 2ξ
∣∣∣θ̂ − θ0

∣∣∣ −→
P

0. (3.4.15)

Thus

P (NT1 > ϵ) ≤ P
(
NT1 > ϵ|T ξ

∣∣∣θ̂ − θ0

∣∣∣ ≤ T−ξ
)
+ P

(
T ξ
∣∣∣θ̂ − θ0

∣∣∣ > T−ξ
)

P
(
T ξ
∣∣∣θ̂ − θ0

∣∣∣ ≥ T−ξ
)
−→ 0 as T −→ ∞ (3.4.16)

by the central limit theorem.

Conditioning upon T ξ
∣∣∣θ̂ − θ0

∣∣∣ ≤ T−ξ

∣∣∣exp(− (xt + xt+s) θ̂
)
− exp (− (xt + xt+s)θ0)

∣∣∣
= exp (− (xt + xt+s)θ0)

∣∣∣exp(− (xt + xt+s)
(
θ̂ − θ0

))
− 1
∣∣∣ . (3.4.17)
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Since xt =
(

1
t/T

)
,∣∣∣(xt + xt+s)

(
θ̂ − θ0

)∣∣∣ =

∣∣∣∣2 (α̂− α0) +
2t+ s

T

(
β̂ − β0

)∣∣∣∣
≤ 2

{
|α̂− α0|+

∣∣∣β̂ − β0

∣∣∣}
≤ 4

∣∣∣θ̂ − θ0

∣∣∣ . (3.4.18)

For all su�ciently large T,∣∣∣exp(− (xt + xt+s)
(
θ̂ − θ0

))
− 1
∣∣∣ ≤ 2

∣∣∣(xt + xt+s)
(
θ̂ − θ0

)∣∣∣
≤ 2

{
4
∣∣∣θ̂ − θ0

∣∣∣}
≤ 8T−2ξ. (3.4.19)

Also, exp (− (xt + xt+s)θ0) ≤ exp (2|α0|+ 2|β0|).

Therefore conditioning upon
∣∣∣θ̂ − θ0

∣∣∣ ≤ T−2ξ, for any 0 < κ < ξ

NT1 ≤ 8

τ

τ−1∑
s=0

1

T − s

T−s∑
t=1

T 2κ exp (2|α0|+ 2|β0|)T−2ξ

= T 2(κ−ξ) exp (2|α0|+ 2|β0|)

−→ 0 as T −→ ∞ for any κ < ξ. (3.4.20)

Thus P

(
NT1 > ϵ

∣∣∣∣T ξ ∣∣∣θ̂ − θ0

∣∣∣ ≤ T−ξ
)

−→ 0 as T −→ ∞.

The same argument applies for NT2 and NT3.

Thus P (|NT | > ϵ) −→ 0 as T −→ ∞.

As ∣∣∣R̂T − rT

∣∣∣ ≤
∣∣∣R̂T − R̃T

∣∣∣+ ∣∣∣R̃T −RT

∣∣∣+ |RT − rT |

P
(∣∣∣R̂T − R̃T

∣∣∣ > ϵ/2
)

≤ P (|NT | > ϵ/2) −→ 0 as T −→ ∞

P
(∣∣∣R̃T −RT

∣∣∣ > ϵ
)

−→ 0 (3.4.21)

it is now clear that P
(∣∣R̄T

∣∣ > ϵ/2
)
−→ 0. Our estimator for the frequency of our

model is convergent in probability to the true frequency. This result, although thor-

oughly veri�ed only for the intercept-and-trend case, holds for any log-linear mean

function provided that the regressors are all bounded. This can be seen by assuming

all terms in xt are in | − 1, 1|, replacing all eα+βt/T terms by eα+βt/T+γut , bounding

the latter by eα+|γ|+βt/T and proceeding.
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3.5 Extension of results on θ̂GLM to include random-

valued regressors

Although trend and intercept parameters are needed in most cases to obtain an over-

all picture of the data, the inclusion of other regressors will often be very useful. The

incidence of almost anything related to accidents (car insurance, tra�c accidents or

hospital admissions) will have some dependence on the weather and the number of

cases seen of most diseases are related to population size. We will call such realisa-

tions of random variables random-valued regressors

The asymptotic results established previously are all proven by studying the limiting

behaviour of functions of summations, an approach that is easily extendable to mod-

els with random-valued covariates. As covariates like population sizes are stochastic

rather than deterministic like time covariates, one however can not directly compute

summations of such regressors or their exponentials. This problem will be bypassed

using assumptions on the distribution and deviance of any random-valued regres-

sors, as well as further applications of Chebychev's inequality and Abel's Lemma, to

construct bounds for these summations.

3.5.1 Consistency of θ̂GLM for the model with random-valued

regressors

The convergence of the variance of the log-likelihood V (lT (θ)) to zero as T −→

∞ is a su�cient condition for {θ̂GLM − θ0} to be pointwise convergent to 0 and

equicontinuous in probability, which together establish uniform convergence of θ̂GLM

to θ0. Looking at the methods used to establish the consistency of trend and intercept

parameters, it is clear in turn that

f(T ) =
1

T

T∑
t=1

xTt θ exp(xTt θ) cos(2ωt) ∝
√
V (l(θ)) −→ 0 as T −→ ∞

is a su�cient condition for the convergence of V (lT (θ)) to zero, provided that |xTt θ|

is bounded

Thus for a model with a single random-valued regressor, we shall examine the limiting
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behaviour of its likelihood variance via that of f(T ).

We will be working under the assumption that for any random-valued regressor xt,

ut = xt − E(xt) has a Normal distribution and can be expressed as a causal and

invertible ARMA process with E(xt) = Pt+St where Pt is a �nite-degree polynomial

of time and St is a seasonality function consisting either of a step process (for the

daily, weekly or monthly mean rainfall in a country with a "wet" and a "dry" season)

or a �rst-degree trigonometric polynomial with known period (for hours of sunshine or

temperature in a temperate country). Both parts can be estimated via least squares.

First consider the case when xt is zero-meaned, with autocorrelation function R(t, t±

s) = σ2ρ(s).

Note that

f(T ) =
1

T

T∑
t=1

xTt θ exp
(
xTt θ

)
cos(2ωt)

=
1

T

T∑
t=1

(α + βt/T + γut)e
α+βt/T+γut cos(2ωt)

and that

f̃(T ) = E (f(T ))

=
1

T

T∑
t=1

(
α + βt/T + γ2σ2

)
eα+βt/T+γ

2σ2/2 cos(2ωt) −→ 0. (3.5.1)

By Chebychev's inequality,

P
(
|f(T )− f̃(T )| > ϵ

)
≤ V (f(T ))

ϵ2

=
1

T 2ϵ2

T∑
s=1

T∑
t=1

e2α+β(t+s)/T eγ
2σ2
[
γ2R(t− s)−

(
α + βt/T + γ2σ2

) (
α + βs/T + γ2σ2

)
+ eγ

2R(t−s)
(
α + βt/T + γ2(σ2 +R(t− s))

)(
α + βs/T + γ2(σ2 +R(t− s))

)]
× cos(2(t− s))ω

=
T∑
s=1

T∑
t=s

2eα+βt/T eα+βs/T

T 2ϵ2
eγ

2σ2
[
γ2R(t− s)eγ

2R(t−s) (2α+ β(t+ s)/T + 2σ2
)

+
(
eγ

2R(t−s) − 1
) (
α + βt/T + γ2σ2

) (
α + βs/T + γ2σ2

)
+ γ4R(t− s)2

+γ2R(t− s)

]
cos(2(t− s)ω, (3.5.2)
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where R(t− s) = cov(ut, us) for all t ≥ s.

For any causal ARMA process, there exists r ∈ (0, 1) and a constant 0 < K < ∞

such that for all h = 0, 1, . . . , |R(h)| ≤ Krh. Thus

2

T

T∑
s=1

T∑
t=s

e2α+
β
T
(t+s)T eγ

2σ2
[(

eγ
2R(t−s) − 1

) (
α + βt/T + γ2σ2

) (
α + βs/T + γ2σ2

)
+γ2R(t− s) + γ2R(t− s)eγ

2R(t−s) (2α + β(t+ s)/T + 2σ2
)
+ γ4R(t− s)2

]
× cos(2(t− s)ω)

≤ 2

T

T∑
s=1

T∑
t=s

e2α+
β
T
(t+s)T eγ

2σ2
[(

eγ
2R(t−s) − 1

) (
α + βt/T + γ2σ2

) (
α + βs/T + γ2σ2

)
+γ2R(t− s) + γ2R(t− s)eγ

2R(t−s) (2α + β(t+ s)/T + σ2
)
+ γ4R(t− s)2

]
≤ 2

T

T∑
s=1

T∑
t=s

e2α+
β
T
(t+s)T eγ

2σ2
[(

eKγ
2rt−s − 1

) (
α+ βt/T + γ2σ2

) (
α + βs/T + γ2σ2

)
+Kγ2rt−s +Kγ2rt−seKγ

2rt−s (
2α + β(t+ s)/T + σ2

)
+K2γ4r2(t−s)

]
. (3.5.3)

All parts inside the square brackets are proportional to rt−s, r2(t−s)eKγ
2rt−s

,(
eKγ

2rt−s − 1
)
(α+ βt/T ) (α + β/T ) or (α + βt/T ) rt−seKγ

2rt−s
.

Considering these four terms in turn, we have that

1

T 2

T∑
s=1

T∑
t=s

rt−se2α+
β
T
(t+s) ≤ e2(|α|+|β|)

T 2

T∑
s=1

r−s
T∑
t=s

rt

=
e2(|α|+|β|)

T 2

T∑
s=1

r−s
rT+1 − rs

r − 1

∝ 1

T 2

T∑
s=1

rT+1−s − 1

r − 1
=

1

T (1− r)
− rT+1(r−T − 1)

T 2(1− r)2

=
1

T (1− r)
− r(1− rT )

T 2(1− r)2
−→ 1

0
as T −→ ∞. (3.5.4)

Similarly we can show

1

T 2

T∑
s=1

T∑
t=s

r2(t−s)eKγ
2r2(t−s)

e2α+
β
T
(t+s)

≤ eKγ
2

T 2

T∑
s=1

T∑
t=s

(r2)t−se2α+
β
T
(t+s)T −→ 0 as T −→ ∞, (3.5.5)
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and

1

T 2

T∑
s=1

T∑
t=s

(α + βt/T ) rt−seKγ
2rt−s

e2α+
β
T
(t+s)

≤ (|α|+ |β|)eKγ2

T 2

T∑
s=1

T∑
t=s

rt−se2α+
β
T
(t+s) −→ 0 as T −→ ∞. (3.5.6)

Using the identity that for any x ≤ K |ex − 1| ≤ eKx

1

T 2

T∑
s=1

T∑
t=s

(
α +

βt

T

)(
α +

βs

T

)
e2α+

β
T
(t+s)

(
eKγ

2rt−s − 1
)

≤ (|α|+ |β|)2 e|α|+|β|
T∑
s=1

T∑
t=s

(
eKγ

2rt−s − 1
)

≤ (|α|+ |β|)2 e|α|+|β|
T∑
s=1

T∑
t=s

Kγ2rt−seKγ
2 −→ 0 as T −→ ∞. (3.5.7)

Thus |f(T )− f̃(T )| −→ 0 as T −→ ∞ when xt is a stationary ARMA process, which

combined with f̃(T ) −→ 0 implies that f(T ) −→ 0 as T −→ ∞. This is su�cient to

establish consistency of θ̂.

To extend this to the case when the random regressor has a non-zero mean, it is

su�cient to establish the convergence to zero of f(T ) when xTt θ = α+βt/T +Pt+St.

The trend component Pt can be incorporated into the trend function of the mean and

St can be incorporated into the intercept when it is a step function. Therefore the

problem can be reduced to proving the convergence to zero of f(T ) when xTt θ =

α+ βt/T +ψ cos(θt+ δ), where θ = 2π/P is a known frequency corresponding to an

integer period P.

f(T ) =
1

T

T∑
t=1

(α + βt/T + ψ cos(θt+ δ)) eα+βt/T+ψ cos(θt+δ) cos(2ωt)

=
1

T

T∑
t=1

(α + βt/T ) eα+βt/T eψ cos(θt+δ) cos(2ωt)

+
1

T

T∑
t=1

ψ cos(θt+ δ)eα+βt/T eψ cos(θt+δ) cos(2ωt). (3.5.8)
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Considering that cos
(
2π
P
(kP + t) + δ

)
= cos

(
2π
P
t+ δ

)
for any values of t and k and

expressing T as MP +N for some N ≤ P , the above expression can be rewritten as

f(t) =
1

T

P∑
k=1

[
M−1∑
t=0

(
α +

β(Pt+ k)

T

)
eα+β(Pt+k)/T cos(2ω(Pt+ k))

+ψ cos(θk + δ)
M−1∑
t=0

eα+β(Pt+k)/T cos(2ω(Pt+ k))

]
eψ cos(θk+δ)

+
1

T

N∑
t=1

(
α +

β(MP + t)

T
+ ψ cos(θt+ δ)

)
eα+β(MP+t)/T+ψ cos(θt+δ)

× cos(2ω(MP + t)) (3.5.9)

1

T

N∑
t=1

(
α +

β(MP + t)

T
+ ψ cos(θt+ δ)

)
eα+β(MP+t)/T+ψ cos(θt+δ) cos(2ω(MP + t))

≤ N

T
(|α|+ |β|+ |ψ|) e|α|+|β|+|ψ| −→ 0. (3.5.10)

M−1∑
t=0

eα+β(Pt+k)/T cos(2ω(Pt+ k)) =
eα+βk/T

1 + e2βP/T − eβP/T cos(2ωP )

×
(
eβP (M+1)/T cos (2((M − 1)P + k)ω)− eβPM/T cos (2(MP + k)ω)− eβP/T + cos (2ωk)

)
≤ eα+|β|

1 + e2βP/T − eβP/T cos(2ωP )

(
e|β|P (M+1)/T + e|β|PM/T + e|β|P/T + 1

)
. (3.5.11)

This implies that

1

T

P∑
k=1

ψ cos(θk + δ)eψ cos(θk+δ)

M−1∑
t=0

eα+β(Pt+k)/T cos(2ω(Pt+ k))

≤ P |ψ|eα+|β|+|ψ|

T (1 + e2βP/T − eβP/T cos(2ωP ))

(
e|β|P (M+1)/T + e|β|PM/T + e|β|P/T + 1

)
∝ P

T
−→ 0. (3.5.12)

Similarly,

1

T

P∑
k=1

M−1∑
t=0

(
α +

β(Pt+ k)

T

)
eα+β(Pt+k)/T+ψ cos(θk+δ) cos(2ω(Pt+ k))

−→ 0 as T −→ ∞. (3.5.13)

Therefore f(T ) −→ 0 as T −→ ∞. This is su�cient proof that θ̂GLM is a consistent

estimator of the mean parameters of a model including trigonometric regressors.

Together with the previous proof, it is a su�cient condition for the consistency of

θ̂GLM for a model including random-valued regressors with a seasonal mean function.
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3.5.2 Asymptotic normality of θ̂GLM with random-valued re-

gressors

Let PT (θ) =
1√
T

T∑
t=1

AxTt (yt − µt) be any linear projection of the rescaled score func-

tion
√
TST (θ) =

1√
T

T∑
t=1

xTt (yt − µt).

As established earlier in Section 3.2, the convergence of the characteristic function

φX(λ) = E[exp(iλX)] of PT (θ) to that of a Gaussian random variable is a su�cient

condition for
√
TST (θ) to be asymptotically normal. By the Mean Value theorem,

this in turn is a su�cient condition for
√
T
(
θ̂GLM − θ0

)
to converge in distribution

to a mean zero normal random variable.

Thus to extend the asymptotic normality of θ̂GLM from a trend and intercept param-

eter vector to one containing random-valued regressors satisfying certain conditions,

we shall compute the characteristic function of PT (θ) and examine its limiting be-

haviour in the case where xTt = (1, t
T
, ut) for a random-valued regressor {ut} in [−1, 1].

As {ut} is a series of known values, it can always be bounded by rescaling.

E
[
exp (iλPT (θ))

]
= E

[
E (exp (iλPT (θ))) | ϕ

]
= E

(
1√
T

T∏
t=1

E
[
exp ((a+ bt/T + cut) iλ (yt − µt)) | ϕ

])
. (3.5.14)

Since {yt|ϕ} ∼ Po (µtεt) where µt = exp(α+βt/T +γut) and ϵt = 1+cos (2(ωt+ ϕ))

T∏
t=1

E
[
exp ((a+ bt/T + cut) iλ (yt − µt)) | ϕ

]
=

T∏
t=1

exp

[
µtεt

(
exp

(
iλ√
T
(a+ bt/T + cut)

)
− 1

)
− iλ√

T
(a+ bt/T + cut)µt

]

= exp

[
T∑
t=1

(
exp

(
iλ√
T
(a+ bt/T + cut)

)
− 1− iλ√

T
(a+ bt/T + cut)

)

× exp (α + βt/T + γut)

]

× exp

[
T∑
t=1

(
exp

(
iλ√
T
(a+ bt/T + cut)

)
− 1

)
exp (α + βt/T + γut) cos(2(ωt+ ϕ))

]
.

(3.5.15)
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Thus

E
(
exp[iλPT (θ)]

)
= exp

[
T∑
t=1

(
exp

(
iλ√
T
(a+ bt/T + cut)

)
− 1− iλ√

T
(a+ bt/T + cut)

)

× exp (α+ βt/T + γut)

]
× E

{
exp

[
T∑
t=1

(
exp

(
iλ√
T
(a+ bt/T + cut)

)
− 1

)

× exp (α+ βt/T + γut) cos(2(ωt+ ϕ))

]}
. (3.5.16)

By (3.3.10) ,as for trend and intercept only,

T∑
t=1

[
exp

(
λi(a+ bt/T + cut)√

T

)
− 1− iλ

(
a+ bt/T + cut√

T

)]
exp(α+ βt/T + γut)

− −λ2

2

T∑
t=1

[
(a+ bt/T + cut)

2

T

]
exp(α+ βt/T + γut)

−→ 0 as T −→ 0. (3.5.17)

Therefore a random variable XT with characteristic function

T∑
t=1

[
exp

(
λi(a+ bt/T + cut)√

T

)
− 1− iλ

(
a+ bt/T + cut√

T

)]
exp(α + βt/T + γut)

(3.5.18)

has the same limiting distribution as T −→ 0 as

YT ∼
T∑
t=1

[
(a+ bt/T + cut)

2

T

]
exp(α + βt/T + γut). (3.5.19)

Using Abel's lemma ,

T∑
t=1

(
exp

(
iλ√
T
(a+ bt/T + cut)

)
− 1

)
exp (α + βt/T + γut) cos(2(ωt+ ϕ))

=

(
exp

(
iλ√
T
(a+ b+ cuT )

)
− 1

)
exp (α + β + γuT )

T∑
t=0

cos(2(ωt+ ϕ))

−
(
exp

(
iλ√
T
(a+ cu0)

)
− 1

)
exp (α + γu0)

−
T−1∑
t=0

∆

[(
exp

(
iλ√
T
(a+ bt/T + cut)

)
− 1

)
exp (α + βt/T + γut)

] t∑
s=0

cos(2(ωs+ ϕ)),

(3.5.20)
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where ∆f(t) denotes the di�erence function f(t+ 1)− f(t)

Note that

∆
[(

exp
(
iλ (a+ bt/T + cut) /

√
T
)
− 1
)
exp (α + βt/T + γut)

]
=

[
exp

(
iλ(a+ bt/T )/

√
T
)(

exp (β/T ) exp
(
iλb/T

√
T
)
exp ((γ + iλc/T )ut+1)

− exp ((γ + iλc/T )ut)
)
−
(
exp (β/T ) exp (γut+1)− exp (γut)

)]
exp (α+ βt/T )

=

[
exp

(
iλ(a+ bt/T )/

√
T
){

(exp ((γ + iλc/T )ut+1)− exp ((γ + iλc/T )ut))

+
(
exp (β/T ) exp

(
iλb/T

√
T
)
− 1
)
exp ((γ + iλc/T )ut+1)

}
−
{
(exp (β/T )− 1) exp (γut+1) + (exp (γut+1)− exp (γut))

}]
exp (α + βt/T ) .

(3.5.21)

T−1∑
t=0

[
exp

(
iλ(a+ bt/T )/

√
T
)(

exp (β/T ) exp
(
iλb/T

√
T
)
− 1
)

× exp ((γ + iλc/T )ut+1)− (exp (β/T )− 1) exp (γut+1)

]
exp (α + βt/T )

=
T−1∑
t=0

[
exp

(
iλ(a+ bt/T )/

√
T
)(

exp (β/T ) exp
(
iλb/T

√
T
)
− 1
)
exp (iλc/Tut+1)

− (exp (β/T )− 1)

]
exp (γut+1) exp (α + βt/T ) . (3.5.22)

Expressing each exponential term as a Taylor series,[
exp

(
iλ(a+ bt/T )/

√
T
)(

exp (β/T ) exp
(
iλb/T

√
T
)
− 1
)
exp (iλc/Tut+1)

− (exp (β/T )− 1)

]
=

{
1 +

iλ(a+ bt/T )√
T

− λ2(a+ bt/T )2

2T
+O

(
T−3/2

)}{β
T

+
iλb

T
√
T

+O
(
T−2

)}
×
{
1 +

iλcut+1√
T

−
λc2u2t+1

2T
+O

(
T−3/2

)}
−
{
β

T
+O

(
T−2

)}
=

{
β

T
+O

(
T−3/2

)}
−
{
β

T
+O

(
T−2

)}
= O

(
T−3/2

)
. (3.5.23)
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As
t∑

s=0

cos(2(ωs+ ϕ)) ≤ 1

|sin(ω)|
, we have that

T−1∑
t=0

∆

[(
exp

(
iλ√
T
(a+ bt/T + cut)

)
− 1

)
exp (α + βt/T + γut)

] t∑
s=0

cos(2(ωs+ ϕ))

≤ 1

|sin(ω)|

T−1∑
t=0

O

(
1

T 3/2

)
exp (γut+1) exp (α + βt/T )

≤ exp (|γ|+ |α|+ |β|)
|sin(ω)|

T−1∑
t=0

O

(
1

T 3/2

)
= O

(
1√
T

)
−→ 0 as T −→ ∞. (3.5.24)

By Abel's lemma, for any A,B

T−1∑
t=0

exp (A+Bt/T ) (exp (γut+1)− exp (γut))

=
(
exp (A+B) exp (γuT )− exp(A) exp (γu0)

)
−

T−1∑
t=0

(exp (A+B(t+ 1)/T )− exp (A+Bt/T )) exp (γut+1) . (3.5.25)

Thus

T−1∑
t=0

[
exp

(
iλ(a+ bt/T )/

√
T
){

exp ((γ + iλc/T )ut+1)− exp ((γ + iλc/T )ut)
}

−
{
exp (γut+1)− exp (γut)

}]
exp (α + βt/T )

=

[(
exp (α + β) exp

(
iλ(a+ b)/

√
T
)
exp ((γ + iλc/T )uT )

− exp (α) exp
(
iλa/

√
T
)
exp ((γ + iλc/T )u0)

)
−
(
exp (α + β) exp (γuT )− exp (α) exp (γu0)

)]
+

{
T−1∑
t=0

exp (α + γut+1 + βt/T ) (exp (β/T )− 1)

− exp (α + γut+1 + βt/T ) exp

(
λi (a+ cut+1 + bt/T )√

T

)(
exp

(
β + λib/

√
T

T

)
− 1

)}
.

(3.5.26)
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Hence [(
exp (α + β) exp

(
iλ(a+ b)/

√
T
)
exp ((γ + iλc/T )uT )

− exp (α) exp
(
iλa/

√
T
)
exp ((γ + iλc/T )u0)

)
−
(
exp (α + β) exp (γuT )− exp (α) exp (γu0)

)]
= exp (α + β + γuT )

(
exp

(
λi (a+ b+ cuT )√

T

)
− 1

)
− exp (α + β + γu0)

(
exp

(
λi (a+ b+ cu0)√

T

)
− 1

)
−→ 0 as T −→ ∞. (3.5.27)

T−1∑
t=0

exp (α + γut+1 + βt/T ) exp

(
λi (a+ cut+1 + bt/T )√

T

)(
exp

(
β + λib/

√
T

T

)
− 1

)

−
T−1∑
t=0

exp (α + γut+1 + βt/T ) (exp (β/T )− 1)

=
T−1∑
t=0

[
exp

(
λi (a+ cut+1 + bt/T )√

T

)(
exp

(
β + λib/

√
T

T

)
− 1

)
− (exp (β/T )− 1)

]
× exp (α + γut+1 + βt/T ) . (3.5.28)

Replacing each exponential term by a Taylor series expansion,[
exp

(
λi (a+ cut+1 + bt/T )√

T

)(
exp

(
β + λib/

√
T

T

)
− 1

)
− (exp (β/T )− 1)

]

=

{
1 +

λi (a+ cut+1 + bt/T )√
T

− λ2 (a+ cut+1 + bt/T )2

T
+O

(
T−3/2

)}

×

[{
β

T
+

λib

T
√
T

+O
(
T−2

)}
−
{
β

T
+O

(
T−2

)}]
= O

(
T−3/2

)
. (3.5.29)
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Therefore

T−1∑
t=0

[
exp

(
λi (a+ cut+1 + bt/T )√

T

)(
exp

(
β + λib/

√
T

T

)
− 1

)
− (exp (β/T )− 1)

]
× exp (α+ γut+1 + βt/T )

=
T−1∑
t=0

O
(
T−3/2

)
exp (α + γut+1 + βt/T )

≤ exp (|α|+ |γ|+ |β|)
T−1∑
t=0

O
(
T−3/2

)
= O

(
1√
T

)
−→ 0 as T −→ ∞. (3.5.30)

Thus

exp

[
T∑
t=1

(
exp

(
iλ√
T
(a+ bt/T + cut)

)
− 1

)
exp (α + βt/T + γut) cos(2(ωt+ ϕ))

]
−→ 1 as T −→ ∞, (3.5.31)

so

E
[
exp (iλPT (θ))

]
−→ lim

T→∞

{
exp

(
−λ2

2

T∑
t=1

[
(a+ bt/T + cut)

2

T

]
exp(α+βt/T+γut)

)}

which is the unique characteristic function of a mean zero Gaussian random variable.



Chapter 4

Models with two latent processes and

their properties

4.1 Introduction

The basic model discussed so far, with its log-linear mean and trigonometric latent

process, accounts well for a single unknown periodicity in a poisson count time series

while also providing a correlation structure, but it is limited in both conditional

expectation and unconditional covariance. Models with more than one unknown

period, additional local dependence or a correlation function which decreases in the

long term would therefore be useful extensions. In this chapter, such models will

be constructed by addition of a second latent process to the basic model and their

unconditional means and covariance functions computed. The asymptotic properties

of the mean parameter estimator and the RFT-based frequency estimator will then

be studied.

73
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4.2 Adding a second periodic latent process to the

model

There are many situations which could result in data with more than one unknown

period. Astronomical observations such as sunspots or Jupiter's storms could be

dependent on the interacting cycles of an unknown subset of satellites. Another

example is the case counts of a highly infectious and rapidly evolving class of diseases

like in�uenza. These could have both a medium-term "predator-prey" cycle of one,

two or three years and a long-term cycle indicative of the time taken for a particularly

malignant variety of pathogen to evolve. The length of both cycles would be of

interest, the �rst when deciding how to optimally utilise drugs or vaccines in the

short term, the second to predict when the next epidemic is likely to occur. Clearly a

model which can capture the behaviour of data with more than one period is needed

Therefore we shall examine models with two unknown periods incorporated via a

two-period trigonometric latent process. In later sections we shall try to extend the

results on asymptotic behaviour of θ̂GLM and ω̂ to cover the two-period models.

An extra period can be added to the basic model either multiplicatively, with

{yt | ϕ, ψ} ∼ Po
(
exp

(
xTt β

)
cos2 (ωt+ ϕ) cos2 (δt+ ψ)

)
or additively, with

{yt | ϕ, ψ} ∼ Po
(
exp

(
xTt β

) (
cos2 (ωt+ ϕ) + A2 cos2 (δt+ ψ)

))
.

In both cases ϕ and ψ are independent Uniform(0, 2π) random variables. Examining

the multiplicative model �rst,

E (yt) = exp
(
xTt β

)
E
(
cos2 (ωt+ ϕ)

)
E
(
cos2 (δt+ ψ)

)
=

exp
(
xTt β

)
4

= µt,

V (yt) = exp
(
2xTt β

)
V
(
cos2 (ωt+ ϕ) cos2 (δt+ ψ)

)
+ E (yt)

= µ2
t

[
E
(
4 cos4 (ωt+ ϕ)

)
E
(
4 cos4 (δt+ ψ)

)
− 1
]
+ µt

= µ2
t

[
E

(
1

2
(cos 4 (ωt+ ϕ) + 4 cos 2 (ωt+ ϕ) + 3)

)2

− 1

]
+ µt

= µt + µ2
t

[(
3

2

)2

− 1

]
= µt +

5µ2
t

4
, (4.2.1)
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Cov (yt, yt+s) = µtµt+sCov
(
4 cos2 (ωt+ ϕ) cos2 (δt+ ψ) , 4 cos2 (ωt+ ωs+ ϕ)

× cos2 (δt+ δs+ ψ)
)

=
[
E
(
4 cos2 (ωt+ ϕ) cos2 (ωt+ ωs+ ϕ)

)
×

E
(
4 cos2 (δt+ ψ) cos2 (δt+ δs+ ψ)

)
− 1
]
µtµt+s

= µtµt+s

[(
1

2
cos (2ωs) + 1

)(
1

2
cos (2δs) + 1

)
− 1

]
=

µtµt+s
4

(2 cos (2ωs) + 2 cos (2δs) + cos (2ωs) cos (2δs))

=
µtµt+s

8
(4 cos (2ωs) + 4 cos (2δs) + cos (2 (ω − δ) s) + cos (2 (ω + δ) s)) .

(4.2.2)

Thus the covariance function of εt = 4 cos2 (ωt+ ϕ) cos2 (δt+ ψ) is a harmonic func-

tion with frequencies equal to twice the di�erence and sum of the initial frequencies,

as well as 2ω and 2δ themselves. Due to these extra frequencies, the multiplicative

model might have potential as a reduced-parameter method of �tting data with an

apparent four-period covariance function. In the case where two of the frequencies

are close to the sum and di�erence of the others and the amplitudes of the four terms

have a ratio close to 4:4:1:1, at least two fewer parameters would be needed to �t

the multiplicative model opposed to an additive one with four trigonometric terms.

However, the multiplicative model is limited in terms of amplitude - this is a quantity

which is impossible to uniquely separate from the intercept term. The additive model

does not have this limitation, although only the ratio of amplitudes is separable. For

{yt | ϕ, ψ} = exp
(
xTt β

) (
cos2 (ωt+ ϕ) + A2 cos2 (δt+ ψ)

)
E (yt) = exp

(
xTt β

) [
E
(
cos2 (ωt+ ϕ)

)
+ E

(
A2 cos2 (δt+ ψ)

) ]
=

1 + A2

2
exp

(
xTt β

)
= µt, (4.2.3)



CHAPTER 4. DOUBLE-LATENT-PROCESS MODELS 76

V (yt) = µt + exp
(
2xTt β

) [
E
(
cos2 (ωt+ ϕ) + A2 cos2 (δt+ ψ)

)2 − (1 + A2

2

)2
]

= µt +
[
E
(
cos4 (ωt+ ϕ)

)
+ A4E

(
cos4 (δt+ ψ)

)
− 1

4

(
1 + 2A2 + A4

)
+ 2A2E

(
cos4 (ωt+ ϕ)

)
E
(
cos4 (δt+ ψ)

) ]
exp

(
2xTt β

)
= µt + exp

(
2xTt β

) [3
8
+

3A4

8
+

2A2

4
− 1

4

(
1 + 2A2 + A4

)]
= µt + exp

(
2xTt β

)(1 + A4

8

)
= µt +

µ2
t

2

[
1

(1 + A2)2
+

A4

(1 + A2)2

]
, (4.2.4)

Cov (yt, yt+s) = Cov
(
cos2 (ωt+ ϕ) + A2 cos2 (δt+ ψ) , cos2 (ω (t+ s) + ϕ)

+ A2 cos2 (δ (t+ s) + ψ)
)
ex

T
t βex

T
t+sβ

=

[
A2E

(
cos2 (ωt+ ϕ)

)
E
(
cos2 (δt+ δs+ ψ)

)
−
(
1 + A2

2

)2

+

E
(
cos2 (ωt+ ϕ) cos2 (ωt+ ωs+ ϕ) + A4 cos2 (δt+ ψ) cos2 (δt+ δs+ ψ)

)
+A2E

(
cos2 (ωt+ ωs+ ϕ)

)
E
(
cos2 (δt+ ψ)

)]
ex

T
t βex

T
t+sβ

=

[
1

8
(2 + cos (2ωs)) +

A4

8
(2 + cos (2δs)) +

A2

2
− 1

4
− A2

2
− A4

4

]
× ex

T
t βex

T
t+sβ

=
cos (2ωs) + A4 cos (2δs)

8
ex

T
t βex

T
t+sβ

=
µtµt+s

2 (1 + A2)2
(
cos (2ωs) + A4 cos (2δs)

)
. (4.2.5)

Due to the possible di�erence in amplitudes, the variance of the latent process in

the additive model is slightly more complex than that in the multiplicative model.

The correlation function however is simpler, using only the initial frequencies.

Several sets of simulated two-period data have been generated and analysed to �nd

their periodicities using the DFT of the latent covariance estimator. The peaks in all

the graphs of the DFT moduli are close to the expected values from the theoretical

covariance of their corresponding latent process, whether εt is two trigonometric terms

multiplied together as in Model 1, two equal-amplitude terms added together as in

Model 2 or two terms with di�erent amplitudes added together as in Models 3 and 4.
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Figure 4.1: DFT plots for covariance estimates from four simula-
tions of size 500, 500, 500, and 200 respectively. All have uncon-
ditional mean exp (1− log (2)− 0.004t) . The latent processes of Model
1, Model 2, Model 3 and Model 4 are 4 cos2 (2πt/24) cos2 (2πt/40),
2 (cos2 (2πt/24) + cos2 (2πt/40)),2 (cos2 (2πt/24) + A2 cos2 (2πt/40)) and
2 (cos2 (2πt/24) + A2 cos2 (2πt/40)) respectively.
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The only drawback, at least empirically, is that in the last case, as could be predicted

from the theoretical covariance function, the term with the higher amplitude has a

frequency displayed on the graph as a much higher peak than that corresponding to

the frequency of the low-amplitude term. The �rst peak in the DFT moduli of Models

3 and 4 is so tall that it would be di�cult to ascertain whether the second peak is

more than just the product of random noise if it was not known to correspond to an

important frequency. One possible way of resolving this is to di�erence the covariance

estimates by a lag equal to the inverse of the estimate of the high-amplitude frequency.

It is simple to show that this new sample has expectation proportional to cos (2ℓt)

where ℓ is the low-amplitude frequency. ℓ can then be estimated using the DFT as for

the frequency of a single-period data set. Hence di�erencing the covariance estimates

is, in theory, a plausible strategy for removing the high-amplitude frequency. In

practice, it depends on the sample size, the length of the low-amplitude period relative

to the number of covariances estimated and the relative amplitude sizes. The larger

the sample size is and the closer the amplitude ratio is to unity, the more di�erentiable

from random peaks the peak at the low-amplitude frequency appears. The former

e�ect is due to the reduced in�uence of white noise, which reduces the relative size

of truly random peaks, as can be seen by comparing the DFT plots for models 3 and

4. The latter e�ect is because the low-amplitude peak is less overshadowed by the

high-amplitude peak. This can be inferred from the di�erences between the DFT

plots of Models 2 and 3, which di�er only in that one has terms with equal amplitude

and the other an amplitude ratio of 4:1. The other factor mentioned, the length

of the low-amplitude period relative to the number M of covariances estimated, is

potentially important when period q is neither close or equal to a divisor of M . In

this case, M is between kq and (k + 1) q for some k, leading to q being estimated

as either M
k

or M
k+1

when in fact it is somewhere between them. To illustrate the

degree of inaccuracy this could lead to, consider the case where q = 20 and M = 90.

The true frequency ω is thus 2π
20

= π
10

= 2π 4.5
90

so would be likely to cause a peak

on the DFT at either 4 or 5. As q̂ = 2πM/ω̂, the period would either be estimated

as 18 or 22.5, either of which are poor estimates of 20. For large values of M, the
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M : q ratio problem could be avoided by recalculating the DFT for subsets of the

covariance estimators - for example over the �rst 60 and 80 covariance estimators for

the previous example. It is possible that whenever a period is long enough relative

to the sample size and at the same time small enough in amplitude to cause such

an inaccuracy, it has little enough e�ect on the behaviour of the observations for an

inaccurate estimate to make much di�erence to the model.

4.3 An ARMA latent process for short-term, non-

periodic dependence

Under the basic single-period model, the covariance structure is Cov (yt, yt+s) =

1
2
µtµt+s cos (2ωs). Clearly correlation is highest when the lag is close to zero or a

multiple of the period and lowest when the lag is near to a half-period. This struc-

ture accounts well both for high short-term correlation and for correlation between

two maximum or minimum values being highly positive while that between a max-

imum and a minimum is highly negative. However, when the trend is positive, the

correlation between two observations lagged by a multiple of the period actually in-

creases as the multiple does. It is highly unlikely that the sunspot numbers or disease

case counts observed at two consecutive time points would be less correlated than

those observed several years apart, so a source of short-term, monotonically decreas-

ing variation is needed to create a model with a more realistic covariance function.

As when extending the single-period model to a two-period one, we shall add short-

term correlation to the basic model by adding a second latent process. The double

latent process {εt} = 2 exp(zt) cos
2 (ωt+ ϕ) is suggested, where zt is a weakly sta-

tionary zero-mean ARMA(p,q) process. This gives the model

{yt|ϕ, zt} ∼ Po
(
2 exp

(
xTt θ + zt

)
cos2(ωt+ ϕ)

)
(4.3.1)

with

E (yt|zt) = exp
(
xTt θ + zt

)
. (4.3.2)
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Thus

E (yt) = exp
(
xTt θ

)
E (exp (zt))

= exp
(
xTt θ

)
exp

(
σ2
z/2
)

(4.3.3)

where σ2
z = V (zt) .

V (yt) = V (E (yt|zt)) + E (V (yt|zt))

= V
(
exp

(
xTt θ + zt

))
+ E

(
exp

(
xTt θ + zt

)
+

1

2
exp

(
2xTt θ + 2zt

))
,

(4.3.4)

E

(
exp

(
xTt θ + zt

)
+

1

2
exp

(
2xTt θ + 2zt

))
= exp

(
xTt θ + σ2

z/2
)
+

1

2
exp

(
2xTt θ + 2zt

)
, (4.3.5)

V
(
exp

(
xTt θ + zt

))
= exp

(
2xTt θ

) [
E
(
exp (2zt)− exp

(
σ2
z

))]
= exp

(
2xTt θ

) [
E
(
exp

(
2σ2

z

)
− exp

(
σ2
z

))]
.. (4.3.6)

Thus V (yt) = exp
(
xTt θ

)
exp (σ2

z/2) + exp
(
2xTt θ

)
exp (σ2

z)

[
3 exp(σ2

z/2)
2

− 1

]
.

Also

Cov (yt, yt+s) = E (ytyt+s)− E (yt)E (yt+s)

= E
(
E (ytyt+s|zt, zt+s)

)
− exp

(
xTt θ

)
exp

(
xTt+sθ

)
exp

(
σ2
z

)
= E

[
Cov (yt, yt+s|zt, zt+s) + E (yt|zt)E (yt+s|zt+s)

]
− exp

(
xTt θ

)
exp

(
xTt+sθ

)
exp

(
σ2
z

)
= E

[
exp

(
xTt θ

)
exp

(
xTt+sθ

)
exp (zt) exp (zt+s) (cos(2ωs) + 2)

2

]
− exp

(
xTt θ

)
exp

(
xTt+sθ

)
exp

(
σ2
z

)
= exp

(
xTt θ

)
exp

(
xTt+sθ

)
exp

(
σ2
z

) [cos(2ωs) + 2

2
exp (γz(s))− 1

]
.

(4.3.7)

4.4 The strong mixing of a multivariate AR process

In this section we shall prove that stationary autoregressive (AR) processes are

strongly mixing in the sense of Peligrad et al. (1997), De�nition 2.3, commonly
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known as α-mixing. Although strong mixing of certain ARMA processes has been

proven in Berkes et al. (1981), we shall establish α-mixing of AR processes with

an exponentially decreasing rate. Let {Xt} denote a stationary AR process of or-

der p. Then α-mixing implies that a central limit theorem (clt) exists for Sn =

1√
n

∑n
t=1(Xt − E[Xt]), using Peligrad et al. (1997), Theorem 2.2. Although this

result is not of direct use, as a clt for {Sn} can be proved straightforwardly with-

out recourse to α-mixing, we will also show that the α-mixing of {Xt} implies the

α-mixing of {Yt}. {Yt|Xt, ϕ} ∼ D (Ft(Xt, ϕ)). D denotes an arbitrary but spec-

i�ed probability distribution and Ft(·) denotes a deterministic function (possibly)

dependent upon t. In our periodic model for Poisson counts, Ft(Xt) is taken to be

exp
(
xTt θ

)
(1 + cos (2ωt+ 2ϕ)), where x and θ denote vectors, of covariates associ-

ated with time point t and of the corresponding parameters respectively. Given {Xt}

and ϕ, the {Yt}'s are conditionally independent. The α-mixing of {Yt} then can be

used to establish a central limit theorem for

S̃n =
n∑
t=1

ant(Yt − E[Yt]) (4.4.1)

conditional on ϕ, under weak conditions upon {ant} and {Yt} provided that there

exists 0 < σ2 < ∞ such that var(
∑n

t=1 antYt) → σ2 as n → ∞. Such results will

be very useful when proving asymptotic results for estimators of parameters in the

double-latent-process model.

4.4.1 Rewriting MAR(m, p) processes asMAR(mp, 1) processes

Anm-dimensional multivariate autoregressive process of order p (MAR(m, p)), {Xt},

satis�es

Xt =

p∑
i=1

ΦiXt−i + ϵt, (t ∈ Z) (4.4.2)

where Φi is an m×m matrix and {ϵt} are independent and identically distributed ac-

cording to ϵ ∼MVN(0,Γ), an m-dimensional multivariate normal with mean 0 and

covariance matrix Γ. The MAR(m, p) process can be embedded in an MAR(mp, 1)
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process as follows. Let Zt = (XT
t ,X

T
t−1, . . . ,X

T
t−p+1)

T , ϵ̃t be a vector of length mp

with ϵ̃t = (ϵTt , 0, 0, . . . , 0)
T and

A =



Φ1 Φ2 · · · Φp−1 Φp

I 0 · · · 0 0

0 I · · · 0 0

...
...

. . .
...

...

0 0 · · · I 0


(4.4.3)

with I denoting an m-dimensional identity matrix. Then {Xt} is embedded in {Zt},

where

Yt = AYt−1 + ϵ̃t (t ∈ Z).. (4.4.4)

Let λ denote the Perron-Frobenius (largest-magnitude) eigenvalue of A, then {Zt}

and hence {Xt} is stationary if λ < 1. Note that the eigenvalues of A can be

complex. Moreover, we assume that |A| ̸= 0, where |A| denotes the determinant

of A. Throughout we restrict attention to stationary processes. Furthermore, since

any MAR(m, p) process can be embedded in an MAR(mp, 1) process, all results

presented are for MAR(m, 1) processes.

4.4.2 Mixing for MAR(m, 1) processes

Let {Zt} satisfy

Zt = AZt−1 + ϵt (t ∈ Z), (4.4.5)

where ϵt ∼ MVN(0,Γ) and λ < 1. Let A and B be two σ-algebras of events and

de�ne

α(A,B) = sup
A∈A,B∈B

|P (AB)− P (A)P (B)|.. (4.4.6)

Let F b
a = σ(Zt, a ≤ t ≤ b). Then {Zt} is said to be a strongly mixing sequence if

αk → 0 as k −→ ∞, where

αk = sup
n
α(Fn

−∞,F∞
n+k).. (4.4.7)
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Equation (4.4.7) can be simpli�ed by making two simple observations concerning

{Zt}. Firstly, {Zt} is stationary, so

αk = α(F0
−∞,F∞

k ).. (4.4.8)

Secondly, for any l ∈ Z, Zl+1,Zl+2, . . ., are independent of Zl−1,Zl−2, . . . given Zl.

Thus

αk = α(F0
0 ,Fk

k )

= sup
A,B⊂Rm

|P (Z0 ∈ A,Zk ∈ B)− P (Z0 ∈ A)P (Zk ∈ B)|

= sup
A,B⊂Rm

P (Z0 ∈ A)|P (Zk ∈ B|Z0 ∈ A)− P (Zk ∈ B)|.. (4.4.9)

We shall exploit (4.4.9) to prove the α-mixing of {Zt}.

Let Σ =
∑∞

j=0A
jΓ(AT )j and let Λk =

∑k−1
j=0 A

jΓ(AT )j = Σ− AkΣ(AT )k.

Inverting the equation (1 − AB)Zt = ϵt, where B is the di�erence operator, gives

Zt =
∑∞

j=0A
jϵt. Then observing that V ar(Zt) =

∑∞
j=0 V ar(A

jϵt) makes it clear

that

Zk ∼MVN(0,Σ) (4.4.10)

and

Zk|Z0 = z ∼MVN(Akz,Λk).. (4.4.11)

Let X and Y be m-dimensional random variables with probability density functions

(pdfs) g(x) and h(x), respectively. The total variation distance between X and Y,

denoted dTV (X,Y) is given by

dTV (X,Y) = sup
C⊂Rm

|P (X ∈ C)− P (Y ∈ C)|

=
1

2

∫
|g(x)− h(x)| dx. (4.4.12)

Combining (4.4.9) with the above de�nition, we have that

αk ≤
∫
f(z)dTV ({Zk|Z0 = z},Zk) dz, (4.4.13)

where f(z) is the pdf of Z0 ∼MVN(0,Σ).
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We continue by studying dTV ({Zk|Z0 = z},Zk) before returning to (4.4.13). Let

Y(k, z) ∼MVN(Akz,Σ). By the triangle inequality,

dTV ({Zk|Z0 = z},Zk) ≤ dTV ({Zk|Z0 = z},Y(k, z)) + dTV (Y(k, z),Zk).

(4.4.14)

We proceed by obtaining bounds for the two terms on the right hand side of (4.4.14).

Let U ∼ MVN(0,Σ) and Uk ∼ MVN(0,Λk). A simple change of variable

argument shows that

dTV ({Zk|Z0 = z},Y(k, z)) = dTV (U,Uk).. (4.4.15)

Note that

2dTV (U,Uk) = (2π)−m/2
∫ ∣∣∣∣|Σ|−1/2 exp

(
−1

2
xTΣ−1x

)
− |Λk|−1/2 exp

(
−1

2
xTΛ−1

k x

)∣∣∣∣ dx
≤ (2π)−m/2

∫
exp

(
−1

2
xTΣ−1x

) ∣∣|Σ|−1/2 − |Λk|−1/2
∣∣ dx

+
21

(2π)m/2|Λk|1/2

∫ ∣∣∣∣exp(−1

2
xTΣ−1x

)
− exp

(
−1

2
xTΛ−1

k x

)∣∣∣∣ dx.
(4.4.16)

The �rst term on the right hand side of (4.4.16) is equal to

|Σ|1/2||Λk|1/2 − |Σ|1/2|
|Σ|1/2|Λk|1/2

=
|Σ|−1/2||Λk|1/2 − |Σ|1/2|

|Σ|−1/2|Λk|1/2

=
||ΛkΣ−1|1/2 − 1|

|ΛkΣ−1|1/2

= |ΛkΣ−1|−1/2
∣∣1− |ΛkΣ−1|1/2

∣∣ , (4.4.17)

where ΛkΣ
−1 = I − AkΣ(AT )kΣ−1 = I −Rk, say.

To obtain bounds for (4.4.17), we �rst need to establish the following two lemmas.

Lemma 1:Let F be a m × m matrix such that f̂ = max1≤i,j≤m |fij| ≤ ϵ for some

ϵ ≥ 0, where fij is the (i, j)th of F . Then

||I + F | − 1| ≤ mϵ+O(ϵ2). (4.4.18)

Proof: For any two n × n matrices A and B and scalar k, it is well-established

that

|A+ kB| − |A| = |A|tr
(
A−1B

)
k +O(k2).
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A special case of this is where A = In, giving

|In + kB| = 1 + tr (B) k +O(k2).

Thus after rewriting F = f̂X, where all elements of X are less than or equal to 1 in

absolute value, we have that

|In + f̂X| − 1 = tr (X) f̂ +O(f̂ 2). (4.4.19)

Thus
∣∣∣|In + f̂X| − 1

∣∣∣ ≤ mϵ+O(ϵ2). �

Hence there exists ϵ0 > 0, such that for all ϵ ≤ ϵ0,

||I + F | − 1| ≤ (m+ 1)ϵ.. (4.4.20)

Since |A| is non-singular, there exists a diagonal matrix D consisting of the eigen-

values of A and invertible matrix L such that

A = L−1DL, (4.4.21)

where D and L are possibly complex matrices, depending upon whether or not the

eigenvalues of A are real or not. Then the maximal absolute value of an element of Ak

is less than or equal to m2q̂l̂λk, where q̂ is the maximum absolute value of Q = L−1.

Lemma 2: For n ≥ 1, let B1, B2, . . . , Bn be m×m matrices and F =
∏n

j=1Bj. Then

f̂ ≤ mn−1

n∏
j=1

b̂j.. (4.4.22)

Proof. The ijth value of a product of an l ×m matrix A and an m× p matrix B is

always smaller thanmaibj, where ai and bj are the largest absolute values in the i
throw

of A and jth column of B respectively. Using the case where l = m = n, together

with induction upon n the proof is very straightforward and is hence omitted. �

Hence, there exists β < ∞, such that for all k ≥ 0, the maximal element of

Rk = AkΣ(AT )kΣ−1 is less than βλ2k.
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Thus there exists k1 ∈ N, such that for all k ≥ k1,∣∣|ΛkΣ−1| − 1
∣∣ ≤ (m+ 1)βλ2k.. (4.4.23)

Since for all x ≥ 0, |
√
x− 1| ≤ |x− 1|,∣∣|ΛkΣ−1|1/2 − 1

∣∣ ≤ (m+ 1)βλ2k.. (4.4.24)

Therefore there exists k2 ∈ N, such that for all k ≥ k2,

|ΛkΣ−1|1/2 ≥ 1

2
. (4.4.25)

and hence, for all su�ciently large k, the �rst term on the right hand side of (4.4.16)

is less than 2(m+ 1)βλ2k.

Turning to the second term on the right hand side of (4.4.16),∫ ∣∣∣∣exp(−1

2
xTΣ−1x

)
− exp

(
−1

2
xTΛ−1

k x

)∣∣∣∣ dx
≤

∫
max

{
exp

(
−1

2
xTΣ−1x

)
, exp

(
−1

2
xTΛ−1

k x

)}
×

∣∣∣∣exp(−1

2

∣∣xTΣ−1x− xTΛ−1
k x
∣∣)− 1

∣∣∣∣ dx
≤ 1

2

∫ {
exp

(
−1

2
xTΣ−1x

)
+ exp

(
−1

2
xTΛ−1

k x

)} ∣∣xTΣ−1x− xTΛ−1
k x
∣∣ dx,
(4.4.26)

since for any y > 0, |1− e−y| ≤ y.

Note that

xTΣ−1x− xTΛ−1
k x = xT

(
Σ−1 − Λ−1

k

)
x (4.4.27)

and Λ−1
k = Σ−1(I −Rk)

−1. Thus

xTΣ−1x− xTΛ−1
k x = xTΣ−1

{
I − (I −Rk)

−1
}
x

= xTΣ−1
(
{(I −Rk)− I} (I −Rk)

−1
)
x

= −xTΣ−1Rk(I −Rk)
−1x. (4.4.28)

For any matrix B, it is clear that

|xTBx| ≤
m∑
i=1

mb̂x2i .. (4.4.29)
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Thus letting Bk = Σ−1Rk(I −Rk)
−1, we have that

∣∣xTΣ−1x− xTΛ−1
k x
∣∣ ≤ mb̂k

m∑
i=1

x2i .. (4.4.30)

As noted above, the maximum value r̂k of Rk is bounded above by βλ2k. Therefore

the exists k3 ∈ N such that, for all k ≥ k3, r̂k ≤ 1/(2m).

Now

Bk = Σ−1Rk(I −Rk)
−1

= Σ−1Rk

∞∑
j=0

Rj
k. (4.4.31)

By Lemma 2, the maximal absolute value of an element of Rj
k is less than 2−(j−1) for

all k ≥ k3. Hence, the maximal absolute value of an element of (I − Rk)
−1 is less

than
∑∞

j=0 2
−(j−1) = 4, for all k ≥ k3. Therefore there exists β1 < ∞ such that for

all k ≥ k3, b̂k ≤ β1λ
2k.

Hence for all k ≥ k3,∫ ∣∣∣∣exp(−1

2
xTΣ−1x

)
− exp

(
−1

2
xTΛ−1

k x

)∣∣∣∣ dx
≤ mβ1λ

2k

m∑
i=1

∫
x2i

{
exp

(
−1

2
xTΣ−1x

)
+ exp

(
−1

2
xTΛ−1

k x

)}
dx.

(4.4.32)

For i = 1, 2, . . . ,m, let σ2
i be the (i, i)

th element of Σ. By construction it is straightfor-

ward to see that the ith component ofUk has smaller variance than the ith component

of U. Hence, the right hand side of (4.4.17) is less than

mβ1λ
2k
{
(2π)m/2|Σ|1/2 + (2π)m/2|Λk|1/2

} m∑
i=1

σ2
i . (4.4.33)

Thus the second term on the right hand side of (4.4.16) is less than(
mβ1

{
1 + |ΛkΣ−1|−1/2

} m∑
i=1

σ2
i

)
λ2k. (4.4.34)

Since |ΛkΣ−1|−1/2 → 1 as k → ∞, we can conclude that there exists k∗ ∈ N and

β∗ <∞, such that, for all k ≥ k∗,

dTV (U,Uk) ≤ β∗λ2k. (4.4.35)
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Next let V ∼ MVN(µ,Σ), for some m-dimensional mean vector µ. Let Bd =

{x; |x| ≤ d}.

Let S = Σ−1 and for d ≥ 0, let Bd = {x;
∑m

i=1 x
2
i ≤ d2}, a ball of radius d centered

at the origin. Then

dTV (V,Zk) = (2π)−m/2|Σ|−1/2

∫ ∣∣∣∣exp(−1

2
(x− µ)TS(x− µ)

)
− exp

(
−1

2
xTSx

)∣∣∣∣ dx
≤ 1

(2π)m/2|Σ|1/2

∫
x∈Bd

∣∣∣∣exp(−1

2
(x− µ)TS(x− µ)

)
− exp

(
−1

2
xTSx

)∣∣∣∣ dx
+P (V ̸∈ Bd) + P (Zk ̸∈ Bd). (4.4.36)

Looking at the second part of the right-hand-side of (4.4.36), observe that

P (V ̸∈ Bd) = P (|V| > d)

≤
m∑
i=1

P (|Vi| > d/m)

=
m∑
i=1

{
Φ

(
−d−mµi

mσi

)
+ Φ

(
−d+mµi

mσi

)}
, (4.4.37)

where Φ(·) denotes the cumulative distribution function (cdf) of a standard univariate

normal random variable. Similarly, P (Zk ̸∈ Bd) ≤ 2
∑m

i=1Φ(−d/(mσi)).

Turning to the �rst term on the right hand side of (4.4.36), note that

(x− µ)TS(x− µ) = xTSx− 2µTSx+ µTSµ. (4.4.38)

Therefore since for all y ≥ 0, |1− e−y| ≤ y, we have that the �rst term on the right

hand side of (4.4.36) is less than

(2π)−m/2|Σ|−1/2

∫
x∈Bd

max

{
exp

(
−1

2
(x− µ)TS(x− µ)

)
, exp

(
−1

2
xTSx

)}
×
{
|µTSx|+ 1

2
|µTSµ|

}
dx

≤ 2 sup
x∈Bd

|µTSx|+ |µTSµ|. (4.4.39)

Putting the two upper bounds together, it is clear that

dTV (V,Zk) ≤
m∑
i=1

{
Φ

(
−d−mµi

mσi

)
+ Φ

(
−d+mµi

mσi

)
+ 2Φ

(
− d

mσi

)}
+ 2 sup

x∈Bd

|µTSx|+ |µTSµ|. (4.4.40)
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Now that bounds for dTV ({Zk|Z0 = z},Y(k, z)) and dTV (Y(k, z),Zk) have been

obtained, we can establish the α-mixing of {Zt}. Let B̃k = Bλ−k/4 . Since the total

variation distance between any two random variables is at most 1, it follows from

(4.4.13) that

αk ≤ P (Zd0 ̸∈ B̃k) +
∫
z∈B̃k

f(z)dTV ({Zk|Z0 = z},Zk) dz

=
m∑
i=1

Φ

(
−λ

−k/4

mσi

)
+

∫
z∈B̃k

f(z)dTV ({Zk|Z0 = z},Zk) dz. (4.4.41)

Note that sup
z∈B̃k

|Akz| → 0. Therefore there exists k4 ∈ N such that for all k ≥ k4

and z ∈ B̃k, Akz ∈ B1.

From the bounds proven for dTV ({Zk|Z0 = z},Zk), we have that for all k ≥

max{k∗, k4} and z ∈ B̃k,

dTV ({Zk|Z0 = z},Zk) ≤ β∗λ2k + 2 sup
z,x∈B̃k

|(Akz)TSx|+ sup
z∈B̃k

|(Akz)TSAkz|

+ 4
m∑
i=1

Φ

(
−λ

−k/4 −m

mσi

)
. (4.4.42)

As stated earlier, there exists a diagonal matrix D consisting of the eigenvalues of A

and invertible matrix L such that A = L−1DL. Hence Ak = L−1DkL, where Dk is a

diagonal matrix consisting of the kth powers of the eigenvalues of A.

Therefore, as L and S are matrices of �xed terms, using (4.4.29) , (4.4.22) and the

de�nition of B̃k, there exists c1, c2, c3 <∞, such that

sup
z,x∈B̃k

|(Akz)TSx| ≤ c1λ
kc2λ

−k/4c3λ
−k/4. (4.4.43)

Similarly, there exists d1, d2, d3 <∞

sup
z∈B̃k

|(Akz)TSAkz| ≤
(
d1λ

kd2λ
−k/4)2 d3. (4.4.44)

Thus there exists H1, H2 <∞, such that for all su�ciently large k,

sup
z,x∈B̃k

|(Akz)TSx| ≤ H1λ
k/2, (4.4.45)

and

sup
z∈B̃k

|(Akz)TSAkz| ≤ H2λ
3k/2. (4.4.46)
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Examining the terms
m∑
i=1

Φ

(
−λ

−k/4 ∓mµi
mσi

)
and

m∑
i=1

Φ

(
−λ

−k/4

mσi

)
next,

m∑
i=1

Φ

(
−λ

−k/4 +mµi
mσi

)
<

m∑
i=1

Φ

(
−λ

−k/4

mσi

)
<

m∑
i=1

Φ

(
−λ

−k/4 −mµi
mσi

)
→ 0.

(4.4.47)

There exists k0 such that for all k ≥ k0,

m∑
i=1

Φ

(
−λ

−k/4 −mµi
mσi

)
≤

m∑
i=1

Φ
(
−λ−k/8

)
. (4.4.48)

Φ
(
−λ−k/8

)
=

∫ −λ−k/8

−∞

1√
2π
e−y

2/2dy

≤
∫ −λ−k/8

−∞

1√
2π
e−|y|dy

=

∫ ∞

λ−k/8

1√
2π
e−ydy

=
1√
2π
e−λ

−k/8

≤ λk/2, (4.4.49)

for all su�ciently large k.

Combining (4.4.42), (4.4.45) and (4.4.46) with (4.4.41), we have that there exists

H <∞, such that for all su�ciently large k,

αk ≤ Hλk/2. (4.4.50)

Thus {Zt} is α-mixing with an geometrically decreasing αk. This exponential rate

of convergence to zero is what gives the strong mixing of {Zt} potential for extension

to unbounded functions of {Zt}, such as exponentials or in�nite summations.

4.4.3 Strong mixing of periodic Poisson regression models with

a secondary AR latent process

Now the α-mixing of {Zt} has been established, we shall try to extend it to periodic

Poisson regression models with a secondary latent AR process. For each time point
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t ∈ Z, we assume that there exists a vector of covariates, xt and an MAR(m, 1)

process Zt such that

{Yt|ϕ,Zt = z} ∼ Po(exp(xTt θ) exp (Zt)), (4.4.51)

where the dimensionality of Ft(·) depends upon the distribution D. The following

Theorem shows that {Yt} are α-mixing. Suppose that {Yt} satis�es (4.4.51) and {Zt}

is an MAR(m, 1) process. Then {Yt} is α-mixing with mixing coe�cients {α̃k} such

that for all su�ciently large k, α̃k ≤ Hλk/2.

Proof. We show that the mixing coe�cients for {Yt} satis�es the bounds obtained

for {Zt}. Fix n ∈ Z and k ∈ N. For l,m ∈ Z, let F̃m
l = σ(Yi; l ≤ i ≤ m). Let

A = {(. . . ,Yn−1,Yn)} , B = {(Yn+k,Yn+k+1, . . .)}

C = {(. . . ,Zn−1,Zn)} , D = {(Zn+k,Zn+k+1, . . .)}

E = {Zn} , F = {Zn+k} . (4.4.52)

Let fn,k(·, ·) denote the joint pdf of Zn and Zn+k and let f(·) denote the pdf of Zn

(Zn+k). Then

sup
A∈F̃n

−∞,B∈F̃∞
n+k

|P (AB)− P (A)P (B)|

= sup
A∈F̃n

−∞,B∈F̃∞
n+k

∣∣∣∣∫ {fn,k(x,y)P (AB|Zn = x,Zn+k = y)

−f(x)f(y)P (A|Zn = x)P (B|Zn+k = y)} dxdy| . (4.4.53)

Note that since A,B are independent given C and D.

P (A,B|C,D) = P (A|C,D)P (B|C,D)

= P (A|C)P (B|D) . (4.4.54)
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Hence,

P (A,B|E,F ) =

∫ ∫
P (A,B,C = x,D = y|E,F ) dxdy

=

∫ ∫
P (A,B|C = x,D = y, E, F ) f (x, y|E,F ) dxdy

=

∫ ∫
P (A|C = x,D = y, E, F )P (B|C = x,D = y, E, F )

×f (x, y|E,F ) dxdy

=

∫ ∫
P (A|C = x,E)P (B|D = y, F ) f (x, y|E,F ) dxdy.

(4.4.55)

Now

f (y|C = x,E, F ) = f (y|F )

f (x, y|E,F ) = f (x|E,F ) f (y|C = x,E, F )

= f (x|E) f (y|C = x,E, F ) (4.4.56)

implying that

=⇒ f (x, y|E,F ) = f (x|E) f (y|F ) .

Therefore ∫ ∫
P (A|C = x,E)P (B|D = y, F ) f (x, y|E,F ) dxdy

=

∫ ∫
P (A|C = x,E)P (B|D = y, F ) f (x|E) f (y|F ) dxdy

=

{∫
P (A|C = x,E) f (x|E) dx

}{∫
P (B|D = y, F ) f (y|F ) dy

}
= P (A|E)P (B|F ) . (4.4.57)

Thus A and B are independent given Zn and Zn+k. Therefore

P (AB|Zn = x,Zn+k = y) = P (A|Zn = x)P (B|Zn+k = y). (4.4.58)

It follows from (4.4.58) that

−
∫

|fn,k(x,y)− f(x)f(y)| dxdy

≤
∫

{fn,k(x,y)P (AB|Zn = x,Zn+k = y)− f(x)f(y)P (A|Zn = x)P (B|Zn+k = y)} dxdy

≤
∫

|fn,k(x,y)− f(x)f(y)| dxdy. (4.4.59)
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Note that

1

2

∫ ∣∣∣∣fn,k(x,y)f(x)
− f(y)

∣∣∣∣ dy = dTV ({Zn+k|Zn = x},Zn+k). (4.4.60)

Therefore the right hand side of (4.4.53) is bounded above by∫
f(x)dTV ({Zn+k|Zn = x},Zn+k) dx, (4.4.61)

which is the bound obtained for αk in (4.4.13) as required. �

For example, suppose that

Yt|Zt ∼ Po(exp(xTt β + ZTt θ)), (4.4.62)

where Po denotes a Poisson random variable, xt are covariates associated with time

point t and β and θ are vectors of parameters. Since for any ϑ ∈ Rm, E[exp(ZTt ϑ)] <

∞, it is straightforward to show that suptE[Y
4
t ] <∞ if and only if supt exp(x

T
t β) <

∞. The model given by (4.4.62) is the Poisson regression model considered in Davis

et al. (2000).

4.5 Extension of results on θ̂GLM for double latent

processes

We shall now extend the uniform convergence in probability and asymptotic normal-

ity of the linear parameter estimator and the pointwise convergence of the frequency

estimator, each established for the basic model in previous chapters, to three mod-

els with two latent processes. These are the two-period models with additive and

with multiplicative trigonometric latent processes, respectively, and the single-period

model with an ARMA process accounting for non periodic, monotonically decreasing

dependence.

4.5.1 Consistency of θ̂GLM

The convergence of the variance of the log-likelihood V (lT (θ)) −→ 0 as T −→ 0 is a

su�cient condition for {θ̂GLM −θ0} to be pointwise convergent to 0 and equicontinu-

ous in probability, which together establish uniform convergence of θ̂GLM to θ0. Thus
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for each of the double-latent-process models we shall examine the limiting behaviour

of its likelihood variance. In each case yt ∼ Po
(
exp(xTt θ)εt

)
where exp(xTt θ) is the

unconditional mean of yt and εt denotes the latent process. Let l̃T (θ, ϑ) denote the

log-likelihood for a single-process model with frequency ϑ.

For the additive model, with latent process εt =
2

1 + A2

(
cos2(ωt+ϕ)+A2 cos2(δt+ψ)

)
V (lT (θ, ω, δ)) =

1

T 2

T∑
t=1

T∑
s=1

Cov(yt, ys)x
T
s θx

T
t θ

=
1

2T 2(1 + A2)2

[
T∑
t=1

(xTt θ)
2ex

T
t θ +

T∑
t=1

T∑
s=1

xTs θx
T
t θe

xT
s θ+xT

t θ

×
(
cos(2(t− s)ω) + A4 cos(2(t− s)δ)

) ]
∝ V

(
l̃T (θ, ω)

)
+ A2V

(
l̃T (θ, δ)

)
−→ 0 as T −→ ∞. (4.5.1)

For the multiplicative model, with latent process εt = 4 cos2(ωt+ ϕ) cos2(δt+ ψ)

V (lT (θ)) =
1

T 2

T∑
t=1

T∑
s=1

Cov(yt, ys)x
T
s θx

T
t θ

=
1

8T 2

[
T∑
t=1

(
xTt θ

)2
ex

T
t θ +

T∑
t=1

T∑
s=1

xTs θx
T
t θe

xT
s θ+xT

t θ

×
{
4 cos(2(t− s)ω) + cos (2(t− s)(ω + δ)) + 4 cos(2(t− s)δ)

+ cos (2(t− s)(ω − δ))
}]

∝ V (lT1 (θ, ω)) + V (lT2 (θ, δ)) + V (lT3 (θ, (ω + δ))) + V (lT4 (θ, (ω − δ)))

−→ 0 as T −→ ∞. (4.5.2)
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For the model with trigonometric-log-ARMA latent process

εt = 2 exp(zt − σ2/2) cos2(ωt+ ϕ)

V (lT (θ)) =
1

T 2

T∑
t=1

(
xTt θ

)2
exp

(
xTt θ

)
+

1

T 2

T∑
t=1

T∑
s=1

xTs θx
T
t θ exp

(
xTs θ + xTt θ

)
×

[
cos(2(t− s)ω) + 2

2
(exp(γ(t− s))− 1) +

cos(2(t− s)ω)

2

]
=

1

T 2

T∑
t=1

(
xTt θ

)2{
exp

(
xTt θ

)
− exp

(
2xTt θ

) [3 exp (σ2
z/2)

2
− 1

]}

+
2

T 2

T∑
s=1

T∑
t=s

xTs θx
T
t θ exp

(
xTs θ + xTt θ

)
×

[
cos(2(t− s)ω)

2
exp(γ(t− s)) + (exp(γ(t− s))− 1)

]
. (4.5.3)

Let γ(h) denote the autocorrelation function of an arbitrary ARMA process. For

a stationary process, there exists K < ∞ and 0 < r < 1, such that for all h ∈

N, |γ(h)| ≤ Krh

2

T 2

T∑
s=1

T∑
t=s

xTs θx
T
t θ exp

(
xTs θ + xTt θ

)
(exp(γ(t− s))− 1)

≤
K sup

(
xTs θx

T
t θ exp

(
xTs θ + xTt θ

))
T 2

T∑
s=1

T∑
t=s

rt−s

∝ 1

T (1− r)
+

1

T 2(1− r)2

−→ 0 as T −→ ∞. (4.5.4)

4.5.2 Asymptotic normality of θ̂GLM

Let PT (θ) =
1√
T

T∑
t=1

(γ + δt/T )
(
yt − exp(xTt θ)

)
be any linear projection of the rescaled

score function
√
TST (θ) =

1√
T

T∑
t=1

(
1
t/T

) (
yt − exp(xTt θ)

)
. By the Cramer-Wold theo-

rem (Billingsley (1968), pages 48-49), the convergence of the characteristic function

φPT
(λ) of PT (θ) to exp (iλµ− λ2σ2/2) (the characteristic of a Gaussian random vari-

able X ∼ N(µ, σ2)) as T −→ ∞, is a su�cient condition for
√
TST (θ) −→

D
N (0,Σ).

This in turn, by the Mean-Value theorem, is a su�cient condition for
√
T
(
θ̂GLM − θ

)
to converge in distribution to a Gaussian random variable.
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The limiting behaviour of the characteristic function of each of the double-process

models shall thus be studied - as the expected limit of a conditional Poisson character-

istic function for the two double-period models and as the unconditional expectation

of a Gaussian characteristic function for the model with a secondary ARMA latent

process. The strong mixing of {yt} established in the previous section will be utilised

in the last case. In each case yt ∼ Po
(
exp(xTt θ)εt

)
where exp(xTt θ) is the uncondi-

tional mean of yt and εt denotes the latent process.

E [exp (PT (θ)) |ϕ, ψ]

=
T∏
t=1

E (exp ((γ + ηt/T ) iλ (yt − µt)) | ϕ)

=
T∏
t=1

exp

[
µtεt

(
exp

(
iλ

(
γ + ηt/T√

T

))
− 1

)
− iλ

(
γ + ηt/T√

T

)
µt

]
.

(4.5.5)

For

{yt|ϕ, ψ} ∼ Po
(
µt
(
1 + cos(2(ωt+ ϕ))

)(
1 + cos(2(δt+ ψ))

))
this is equal to

exp

[
T∑
t=1

(
exp

(
iλ

(
γ + ηt/T√

T

))
− 1− iλ

(
γ + ηt/T√

T

))
µt

]

× exp

[
T∑
t=1

(
exp

(
iλ

(
γ + ηt/T√

T

))
− 1

)
µt

×
(
cos (2 (ωt+ ϕ)) + cos (2 (δt+ ψ)) +

1

2
cos (2 ((ω + δ)t+ (ϕ+ ψ)))

+
1

2
cos (2 ((ω + δ)t+ (ϕ+ ψ)))

)]
. (4.5.6)

Similarly for {yt|ϕ, ψ} ∼ Po
(
µt

1
1+A2 (1 + cos(2(ωt+ ϕ)) + A2 + A2 cos(2(δt+ ψ)))

)
,

E [exp (PT (θ)) |ϕ, ψ] = exp

[
T∑
t=1

(
exp

(
iλ

(
γ + ηt/T√

T

))
− 1− iλ

(
γ + ηt/T√

T

))
µt

]

× exp

[
T∑
t=1

(
exp

(
iλ

(
γ + ηt/T√

T

))
− 1

)
µt

× 1

1 + A2

(
cos (2 (ωt+ ϕ)) + A2 cos (2 (δt+ ψ))

)]
. (4.5.7)
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Both of these conditional characteristic functions are the product of a term inde-

pendent of {ϕ, , ψ}, identical to that seen for the single-process case, multiplied by

several {ϕ, , ψ}-dependent terms, each of the form

exp

[
T∑
t=1

(
exp

(
iλ

(
γ + ηt/T√

T

))
− 1

)
µt cos (2 (ϑt+ φ))

]
(4.5.8)

for some frequency ϑ and random phase-shift φ. We have proven that any such term

converges to one, so

E [exp (PT (θ))] −→ lim
T→∞

{
exp

[
T∑
t=1

(
exp

(
iλ
(
γ+ηt/T√

T

))
− 1− iλ

(
γ+ηt/T√

T

))
µt

]}
for both double-period models.

The vital factor in evaluating the limit of φ(PT ) for the single-process model or

either of the double-period models is the factorisation of the conditional characteristic

function into the product of a frequency-independent term and a frequency-dependent

term. The latter can then be shown to converge to 1, so the limit of the unconditional

characteristic function is equal to that of the former, �xed-value term. This is not

possible when examining φ(PT ) for the model with a secondary ARMA latent process,

due to εt = 2ezt cos2(ωt+ϕ) being non-cyclic. Instead we shall use mixing properties

of some ARMA processes to help calculate the asymptotic characteristic function.

PT (θ) =
1√
T

T∑
t=1

(γ + δt/T ) (yt − µt)

E (PT (θ)|ϕ) =
1√
T

T∑
t=1

(γ + δt/T ) (E (yt|ϕ)− µt)

=
1√
T

T∑
t=1

(γ + δt/T )µt cos(2ωt+ ϕ) (4.5.9)

V (PT (θ)|ϕ) =
1

T

T∑
t=1

T∑
s=1

(γ + δs/T ) (γ + δt/T )Cov
(
(ys − µs) , (yt − µt)

∣∣ϕ)
=

1

T

[
T∑
t=1

T∑
s=1

(
γ + δ

s

T

)(
γ + δ

t

T

)
µtµsCtCs

(
eσ

2ρ(t−s) − 1
)

+
T∑
s=1

(γ + δs/T )2 µsCs

]
. (4.5.10)
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From Section 4.4, {Yt|ϕ} is α-mixing with α̃k ≤ Hλk/2 for all su�ciently large k.

Hence for all δ > 0,
∑

k k
2/δα̃k <∞. From Peligrad and Utev(1997), Theorem 2.2(c)

we have the following theorem;

Let {ani; 1 ≤ i ≤ n} be a triangular array of real numbers such that

sup
n

n∑
i=1

a2ni <∞ and max
1≤i≤n

|ani| → 0 as n −→ ∞. (4.5.11)

Then if there exists δ > 0 such that {|Yt|2+δ} is uniformly integrable and inft var(Yt) >

0,

S̃n =
n∑
t=1

ant (Yt − νt)
D−→ N(µ, σ2) as n −→ 0 (4.5.12)

provided that there exists µ < ∞ and σ2 < ∞ such that E(S̃n|ϕ) → µ and

var(S̃n|ϕ) → σ2 as n −→ 0. PT =
1√
T

T∑
t=1

(γ + δt/T ) (yt − µt) is of the form S̃T

with aTt = γ + ηt/T . It is clear that PT satis�es all the conditions required above,

so {PT |ϕ}
D−→ N

(
lim
T→∞

{E (PT |ϕ)} , lim
T→∞

{V (PT |ϕ)}
)
. Thus

lim
T→∞

{
φ
(
PT |ϕ

)}
= lim

T→∞
{E [exp (λi PT |ϕ)]}

= lim
T→∞

{
exp

{
λiE (PT |ϕ)−

λ2

2
V (PT |ϕ)

}}
. (4.5.13)
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Thus

φ (PT ) = E (φ (Pt|ϕ))

= E

[
exp

(
λi√
T

T∑
t=1

(γ + δt/T )µt (Ct − 1)− λ2

T

T∑
t=1

(γ + δt/T )2 µtCt

− λ2

T

T∑
t=1

T∑
s=1

(γ + δs/T ) (γ + δt/T )µtµsCtCs

(
eσ

2ρ(t−s) − 1
)

= exp

[
−λ2

T

T∑
t=1

T∑
s=1

(γ + δs/T ) (γ + δt/T )µtµs

(
eσ

2ρ(t−s) − 1
)

−λ
2

T

T∑
t=1

(γ + δt/T )2 µt

]

× E

[
exp

{
λi√
T

T∑
t=1

(γ + δt/T )µt cos (2(tω + ϕ))

−λ
2

T

T∑
t=1

T∑
s=1

[
(γ + δs/T ) (γ + δt/T )µtµs

(
eσ

2ρ(t−s) − 1
)

×
{
cos (2(tω + ϕ)) + cos (2(sω + ϕ)) + cos (2(tω + ϕ)) cos (2(sω + ϕ))

}]
− λ2

T

T∑
t=1

(γ + δt/T )2 µt cos (2(tω + ϕ))

}]
. (4.5.14)

By Abel's Lemma,
T∑
t=1

atbt is �nite if Bτ =
τ∑
t=1

bt is bounded and
T−1∑
t=1

(at+1 − at) is

absolutely convergent. Thus

T∑
t=1

(γ + δt/T ) eα+βt/T cos (2(ωt+ ϕ))

and
T∑
t=1

(γ + δt/T )2 eα+βt/T cos (2(ωt+ ϕ))

are �nite, as both

T∑
t=1

∆
{
(γ + δt/T ) eα+βt/T

}
=

T∑
t=1

{
(γ + δt/T ) eα+βt/T

(
eβ/T − 1

)
+eα+β(t+1)/T δ/T

}
, (4.5.15)
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and

T∑
t=1

∆
{
(γ + δt/T )2 eα+βt/T

}
=

T∑
t=1

{
(γ + δt/T )2 eα+βt/T

(
eβ/T − 1

)
+2eα+β(t+1)/T

[
(γ + δt/T ) δ/T + δ2/T 2

] }
,

(4.5.16)

where ∆ {f(t)} = f(t+1)− f(t), are absolutely convergent and
τ∑
t=1

cos (2(ωt+ ϕ)) ≤
1

sin (ω)
.

The case where ω is a multiple of π is excluded, as then cos(2(ωt+ϕ)) is a �xed term

and hence the latent process is not periodic.

Hence

λi√
T

T∑
t=1

(γ + δt/T )µt cos (2(ωt+ ϕ)) − λ2

T

T∑
t=1

(γ + δt/T )2 µt cos (2(ωt+ ϕ)) −→ 0 as

T −→ ∞.

Next we will consider the �nal frequency-dependent term of φ (Pt|ϕ)

T∑
t=1

T∑
s=1

{
(γ + δs/T ) (γ + δt/T )µtµs

(
eσ

2ρ(t−s) − 1
)

×
[
cos (2(ωt+ ϕ)) + cos (2(ωs+ ϕ)) + cos (2ω(t+ s) + 4ϕ)

]}
= 2

T∑
s=1

T∑
t=s

{
(γ + δs/T ) (γ + δt/T )µtµs

(
eσ

2ρ(t−s) − 1
)

×
(
cos (2(ωt+ ϕ)) + cos (2(ωs+ ϕ)) +

1

2
cos (2ω(t+ s) + 4ϕ)

)}
−

T∑
t=1

(γ + δt/T )2 µ2
t

(
2 cos (2(ωt+ ϕ)) +

1

2
cos (4(ωt+ ϕ))

)(
eσ

2 − 1
)
.

(4.5.17)

After rescaling and adjustment of frequency and exponential parameters,

T∑
t=1

(γ + δt/T )2 µ2
t

(
2 cos (2(ωt+ ϕ)) +

1

2
cos (4(ωt+ ϕ))

)(
eσ

2 − 1
)
(4.5.18)

has the same functional form as

T∑
t=1

(γ + δt/T )2 µt cos (2(tω + ϕ)) (4.5.19)
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so it too is �nite.

T∑
s=1

T∑
t=s

{(
γ + δ

s

T

)(
γ + δ

t

T

)
e2α+β(t+s)/T

(
eσ

2ρ(t−s) − 1
)

×
(
cos (2(ωt+ ϕ)) + cos (2(ωs+ ϕ)) +

1

2
cos (2(ω(t+ s) + 2ϕ))

)}

=
T∑
s=1

T−s∑
h=0

{(
γ + δ

s

T

)(
γ + δ

s+ h

T

)
e2α+β(h+2s)/T

(
eσ

2ρ(h) − 1
)

×
(
cos (2(ω(s+ h) + ϕ)) + cos (2(ωs+ ϕ)) +

1

2
cos (2(ω(h+ 2s) + 2ϕ))

)}
.

(4.5.20)

Each part of the above can be rewritten in the form
T∑
s=1

asBs where

as = e2α+2βs/T cos (ω1s+ ϕ1)) (γ + δs/T )κ1 and

Bs =
T−s∑
h=0

(δh/T )κ2 eβh/T cos (ω2s+ ϕ2))
(
eσ

2ρ(h) − 1
)

where {κ1, κ2} = {1, 1} or {2, 0} .

By Abel's lemma,

T∑
s=1

asBs = BT

T∑
s=0

as −B0a0 −
T−1∑
s=0

(
[Bs+1 −Bs]

s∑
r=0

ar

)

= b0

T∑
s=0

as − a0

T∑
s=0

bs +
T−1∑
s=0

(
bT−s

s∑
r=0

ar

)
. (4.5.21)

Thus

T∑
s=1

e2α+2βs/T cos (ω1s+ ϕ1))

(
γ +

δs

T

)κ1
×

T−s∑
h=0

(
δh

T

)κ2
eβh/T cos (ω2h+ ϕ2))

(
eσ

2ρ(h) − 1
)

=
T∑
s=1

asBs (4.5.22)

is bounded by a function of parameters for all T if
t∑

s=1

as,
T∑
h=0

bh and
T−1∑
s=0

|bT−s| are

bounded for all parameter values and all values of T.
t∑

s=1

as is identical in structure to
t∑

s=1

(γ + δt/T ) eα+βt/T cos (2(ωt+ ϕ)) or
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t∑
s=1

(γ + δt/T )2 eα+βt/T cos (2(ωt+ ϕ)), both of which have already been shown to be

bounded for all values of T.

T∑
h=0

bh =
T∑
h=0

(δh/T )κ2 eβh/T cos (ω2s+ ϕ2))
(
eσ

2ρ(h) − 1
)

≤
T∑
h=0

(|δ|h/T )κ2 eβh/T
(
eσ

2ρ(h) − 1
)

≤
T∑
h=0

(|δ|h/T )κ2 eβh/TKrh

=


K

(
1− (eβ/T r)T+1

1− (eβ/T r)

)
for κ2 = 0,

|δ|K

(
(T + 1)(eβ/T r)T+1

T (eβ/T r − 1)
−
eβ/T r

(
(eβ/T r)T+1 − 1

)
T (eβ/T r − 1)

2

)
for κ2 = 1.

(4.5.23)

both of which are bounded for all T by a function depending only on the parameters.

Similarly,

T−1∑
s=0

|bT−s| =
T−1∑
s=0

(|δ|(T − s)/T )κ2 eβ(T−s)/T | cos (ω2(T − s) + ϕ2) |
∣∣∣eσ2ρ(T−s) − 1

∣∣∣
=

T∑
s=1

(|δ|s/T )κ2 eβs/T | cos (ω2s+ ϕ2) |
∣∣∣eσ2ρ(s) − 1

∣∣∣
≤

T∑
s=1

(|δ|s/T )κ2 eβs/TKrs

= K

(
1− (eβ/T r)T

1− (eβ/T r

)
or |δ|K

(
(eβ/T r)T

eβ/T r − 1
−
eβ/T r

(
(eβ/T r)T − 1

)
T (eβ/T r − 1)

2

)
.

(4.5.24)

Thus
T∑
s=1

e2α+2βs/T cos (ω1s+ ϕ1))
(
γ + δs

T

)κ1 T−s∑
h=0

(
δh
T

)κ2
eβh/T cos (ω2h+ ϕ2))

(
eσ

2ρ(h) − 1
)

is bounded for all T, so

λ2

T

T∑
t=1

T∑
s=1

[
(γ + δs/T ) (γ + δt/T )µtµs

(
eσ

2ρ(t−s) − 1
)

×
{
cos (2(tω + ϕ)) + cos (2(sω + ϕ)) + cos (2(tω + ϕ)) cos (2(sω + ϕ))

}]
−→ 0 as T −→ ∞. (4.5.25)
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We have shown that all parts of iλE (PT |ϕ)−λ2V (PT |ϕ) which are dependent upon

ϕ converge to zero, so

lim
T→∞

{φ (PT )} = lim
T→∞

{E (φ (Pt|ϕ))}

= lim
T→∞

{
E
(
iλE (PT |ϕ)− λ2V (PT |ϕ)

)}
= lim

T→∞

{
iλE (PT |ϕ)− λ2V (PT |ϕ)

}
= lim

T→∞

{
exp

[
−λ2

T

T∑
t=1

T∑
s=1

(γ + δs/T ) (γ + δt/T )µtµs

(
eσ

2ρ(t−s) − 1
)

−λ
2

T

T∑
t=1

(γ + δt/T )2 µt

]}
(4.5.26)

which is the characteristic function of a zero-meaned Gaussian random variable with

variance

lim
T→∞

{
T∑
t=1

T∑
s=1

(γ + δs/T ) (γ + δt/T )µtµs

(
eσ

2ρ(t−s) − 1
)
+

T∑
t=1

(γ + δt/T )2 µt

}
.

4.5.3 Consistency of the ACF estimator for a double latent

process and its DFT

As for the single-latent-process model, there is strong empirical evidence that the real

part of the Discrete Fourier Transform (DFT) of the latent process autocovariance

estimator, denoted as R̄T (θ), is maximised at or very close to the true frequency

values. All moments and statistics calculated previously for either of the two double-

period models resemble sums of several corresponding single-period model moments

or statistics, allowing direct extension of results established for the single-period

model to the double period model. Similarly the consistency of R̄T (θ) established

for the single-period model can straightforwardly be adapted to prove consistency of

R̄T for the double-period model.

To establish consistency of R̄T (θ) for the model with a secondary ARMA latent

process, we shall take the same approach as used for the single model. That is,

showing pointwise convergence in probability of the DFT of the latent autocovariance

calculated using the true means, denoted by R̃T (θ), to its expectation RT (θ) after

establishing the convergence of RT (θ) to a delta function R(θ) maximised at the true
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frequency. This is su�cient to prove of the convergence in probability of R̃T (θ) to

R(θ). Then showing that R̄T (θ) converges in probability to R̃T (θ) is su�cient to

establish the convergence in probability of R̄T (θ) to R(θ). Inserting the secondary

ARMA latent process makes calculating third and fourth-order moments of yt − µt

potentially very di�cult, so the strong mixing of Yt shall be used to provide useful

upper bounds. Let

R̃T (θ) =
1

τ

τ−1∑
s=0

(
1

T − s

T−s∑
t=1

ε̃tε̃t+s

)
cos(θs),

R̄T (θ) =
1

τ

τ−1∑
s=0

(
1

T − s

T−s∑
t=1

ε̄tε̄t+s

)
cos(θs)

RT (θ) =
1

2τ

τ−1∑
s=0

[
cos(2ωs)eγ(s) + 2

(
eγ(s) − 1

)]
cos(θs), (4.5.27)

where ε̃t = yt exp
(
−xTt θ0

)
− 1 and ε̄t = yt exp

(
−xTt θ̂

)
− 1.

E
(
R̃T (θ)

)
=

1

τ

τ−1∑
s=0

(
1

T − s

T−s∑
t=1

e−xT
t θ0e−xT

t+sθ0E
[(
yt − ex

T
t θ0

)(
yt+s − ex

T
t+sθ0

)])
cos(θs)

=
1

τ

τ−1∑
s=0

(
1

T − s

T−s∑
t=1

e−xT
t θ0e−xT

t+sθ0Cov (ytyt+s)

)
cos(θs)

=
1

τ

τ−1∑
s=0

Cov (εtεt+s) cos(θs)

=
1

2τ

τ−1∑
s=0

[
cos(2ωs)eγ(s) + 2

(
eγ(s) − 1

)]
cos(θs). (4.5.28)

Thus R̃T (θ) is an unbiased estimate of RT (θ). Now

1

2τ

τ−1∑
s=0

[
cos(2ωs)eγ(s) + 2

(
eγ(s) − 1

)]
cos(θs)

=
1

2τ

τ−1∑
s=0

(cos(2ωs) + 2)
(
eγ(s) − 1

)
cos(θs) +

1

2τ

τ−1∑
s=0

cos(2ωs) cos(θs),

(4.5.29)



CHAPTER 4. DOUBLE-LATENT-PROCESS MODELS 105

where

1

2τ

τ−1∑
s=0

(cos(2ωs) + 2)
(
eγ(s) − 1

)
cos(θs)

≤ 1

2τ

τ−1∑
s=0

3
(
eγ(s) − 1

)
≤ 3

2τ

τ−1∑
s=0

(
eKr

s − 1
)

≤ 3eK

2τ

τ−1∑
s=0

rs ∝ 1− rτ

τ(1− r)

−→ 0 as τ −→ ∞. (4.5.30)

Thus RT (θ) −→ R(θ) =

 0 if θ ̸= 2ω

1
2

if θ = 2ω.

Next assume that E [X4
t ] ≤ K2 for some K > 0. Then E [X2

t ] ≤ K by Jensen's in-

equality. By the Cauchy-Scharz inequality, E(XY ) ≤
√
E (X2)E (Y 2), so V (XtXs) ≤

E [X2
tX

2
s ] ≤

√
K2

√
K2 = K2. Hence

V

(
1

T − s

T−s∑
t=1

XtXt+s

)

=
1

(T − s)2

T−s∑
t=1

T−s∑
u=1

Cov (XtXt+s, XuXu+s)

=
1

(T − s)2

T−s∑
t=1

{
V (XtXt+s) + 2

T−s∑
u=t+1

Cov (XtXt+s, XuXu+s)

}

≤ K2

T − s
+

2

(T − s)2

T−s∑
t=1

T−s∑
u=t+1

Cov (XtXt+s, XuXu+s) . (4.5.31)

Let Ut and Ut+k be two elements of a strong mixing process with mixing coe�cient

αu(k) such that E (U4
t ) < ∞ and E

(
U4
t+s

)
< ∞. Then from Berkes and Morrow

(1981),Lemma 2, Cov (Ut, Ut+k) ≤ 10αu(k)
1/2
√
E (U4

t )E
(
U4
t+k

)
.
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Applying this to the previous equation,

K2

T − s
+

2

(T − s)2

T−s∑
t=1

T−s∑
u=t+1

Cov (XtXt+s, XuXu+s)

≤ K2

T − s
+

2

(T − s)2

T−s∑
t=1

T−s∑
u=t+1

10α
1/2
r−t−sK

2

=
K2

T − s
+

2

(T − s)2

T−s∑
t=1

T−s−t∑
u=1

10α
1/2
u−sK

2

≤ K2

T − s
+

2

(T − s)2

T−s∑
t=1

T−s∑
u=1

10α
1/2
u−sK

2

=
K2

T − s
+

20K2(T − s)

(T − s)2

T−s∑
u=1

α
1/2
u−s

=
K2

T − s

(
1 + 20

T−s∑
t=1

α
1/2
t−s

)
−→ 0 as T −→ ∞. (4.5.32)

Therefore

V
(
R̃T (θ)

)
=

1

τ 2

τ−1∑
s=0

τ−1∑
r=0

Cov (γ̃(s), γ̃(r)) cos(θs) cos(θr)

≤ 1

τ 2

τ−1∑
s=0

τ−1∑
r=0

√
V (γ̃(s))V (γ̃(r))

=
1

τ 2

τ−1∑
s=0

√
V (γ̃(s))

τ−1∑
r=0

√
V (γ̃(r))

=

(
1

τ

τ−1∑
s=0

√
V (γ̃(s))

)2

≤ max
0≤s≤τ

{V (γ̃(s))}

−→ 0 as T −→ ∞. (4.5.33)

Thus by Chebychev's inequality,
∣∣∣R̃T (θ)−RT (θ)

∣∣∣ −→
P

0 as T −→ ∞.

The next step is to prove that
∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ −→
P

0 as T −→ ∞. We shall do this

by splitting the probability into two parts, one where the maximum observed value

exceeds Tα for some suitable value of α and the case where all terms are less than or



CHAPTER 4. DOUBLE-LATENT-PROCESS MODELS 107

equal to Tα.

P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ
)

= P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ ∩MT ≤ Tα
)

+ P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ ∩MT > T α
)

≤ P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ ∩MT ≤ Tα
)
+ P (MT > T α)

= P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ |MT ≤ Tα
)
P (MT ≤ Tα)

+ P (MT > T α) , (4.5.34)

where MT = max
1≤t≤T

{yt}.

The series of steps taken in Section 3.4 to establish that

P
(∣∣∣R̄T (θ)− R̃T (θ)

∣∣∣ > ϵ |MT ≤ Tα
)
P (MT ≤ Tα) −→ 0 as T −→ ∞ (4.5.35)

depend only on the maximum y-value and the distribution of
√
T
∣∣∣θ̂ − θ0

∣∣∣. Thus they
also hold for a double-latent-process model, so it remains to prove that

P (MT > T α) −→ 0 as T −→ ∞.

P (MT > T α) = P (MT > T α ∩ LT ≤ γ log(T )) + P (MT > Tα ∩ LT > γ log(T ))

≤ P (MT > T α ∩ LT ≤ γ log(T )) + P (LT > γ log(T ))

= P (MT > T α | LT ≤ γ log(T ))P (LT ≤ γ log(T ))

+ P (LT > γ log(T )) , (4.5.36)

where LT = max
1≤t≤T

{zt}.

Let X̃T ∼ Po(λT ) where λT = 2T γeα+|β|.

Conditional upon LT ≤ γ log(T ), for all t ≤ T ,

λT ≥ 2 exp (α+ βt/T + zt) ∀ t ≤ T, so ∀ k > 0, .

Therefore for all k ≥ 0

P (yt > k|LT ≤ γ log(T )ϕ) ≤ P
(
X̃T > k

)
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giving by Markov's inequality

P (yt > T α|LT ≤ γ log(T ), ϕ) ≤ P
(
X̃T > T α

)
≤

E
(
sX̃T

)
sTα

=
exp((s− 1)λT )

sTα . (4.5.37)

Taking s = 2,

P (yt > T α|LT ≤ γ log(T ), ϕ) ≤ exp(λT )

2Tα

∝ exp(T γ)

2Tα

= exp (T γ − Tα log(2)) . (4.5.38)

Let X̃1T , X̃2T , . . . , X̃TT be iid according to X̃T and let M̃T = sup
1≤t≤T

{
X̃tT

}
.

P
(
M̃T > x

)
= P

(
T∪
t=1

{
X̃T ≤ x

})

=
T∑
t=1

P
(
X̃tT > x

)
≤ TP

(
X̃T > x

)
≤ T

2x
eλ. (4.5.39)

Since P (yt > T α|LT ≤ γ log(T ), ϕ) ≤ P
(
X̃T > Tα

)
, we have that

P (MT > T α|LT ≤ γ log(T ), ϕ) ≤ P
(
M̃tT > T α

)
. Hence

P (MT > T α|LT ≤ γ log(T ), ϕ) ≤ TeT
γ

2Tα

=
T

exp (Tα log(2)− T γ)
. (4.5.40)

Now removing the dependence on ϕ

P (MT > T α|LT ≤ γ log(T )) =

∫ 2π

0

P (MT > T α|LT ≤ γ log(T ), ϕ) f(ϕ) dϕ

≤
∫ 2π

0

P
(
M̃Tt > T α

)
f(ϕ) dϕ

= P
(
M̃T > T α

)∫ 2π

0

f(ϕ) dϕ

= P
(
M̃T > T α

)
≤ TeT

γ

2Tα . (4.5.41)
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Hence

TeT
γ

2Tα =
TeT

γ

4Tα/2

=
T

(4/e)Tα/2eTα/2−T γ

≤ T(
4
e

)Tα/2
(4.5.42)

for any γ < α.

For any p > 0 and |c| > 1,
np

cn
−→ 0 as n −→ ∞. Taking n = Tα/2,

T eT
γ

2Tα ≤ n2/α(
4
e

)n −→

0 as n −→ ∞, as 4/e > 1 and 2/α > 0

P (LT > γ log(T )) ≤
T∑
t=1

P (Zt > γ log T ) . (4.5.43)

Thus for all γ < α, P (MT > Tα|LT ≤ γ log(T )) −→ 0 and P (LT ≥ γ log(T )) −→ 0

as T −→ ∞. Thus P (MT > T α ∩ LT ≤ γ log(T )) −→ 0 and

P (MT > T α ∩ LT ≥ γ log(T )) −→ 0 as T −→ ∞, so P (MT > T α) −→ 0 as T −→

∞. This is su�cient to conclude that
∣∣∣R̂T (θ)− R̃T (θ)

∣∣∣ −→
P

0 as T −→ ∞.



Chapter 5

Analysis of measles case counts in the

UK

5.1 Introduction and preliminary analysis

We will analyse the following data set of measles occurrences in the UK from 1944-

1966. From the beginning of 1944 to the end of 1966, the number of measles cases

observed in each of sixty UK cities were recorded every two weeks. Various authors

have studied this data set or subsets of it including the following; B.T. Grenfell, O.N.

Bjørnstad, B.F. Finkenstädt and A. Morton. In Finkenstadt and Grenfell (2000),

a discrete-time epidemic model incorporating a time-varying transmission parame-

ter and birth rates, called the Time Series Susceptible-Infected-Recovered (TSIR)

model, is developed to explain the predominant biennial pattern and the high vari-

ation in peak amplitudes apparent in the 1944-1966 60-city measles data set. The

TSIR model is also considered in Grenfell et al (2002), where random immigration

and population sizes are added to help simultaneously capture the behaviour of large-

city endemic cycles and small-town episodic outbreaks. In Morton and Finkenstädt

(2005), Markov-Chain-Monte-Carlo methods are applied to the TSIR model to make

inference about the unknown parameters of interest and missing data in the form of

unobserved populations. A epidemic metapopulation model, to better capture the

spatiotemporal properties in measles epidemics, is constructed in Xia et. al.(2004)

110
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by combining the TSIR model with a gravity model for regional spread.

A very di�erent modelling approach will be taken in this chapter, based on the pe-

riodic count time series model for the case counts as numbers, opposed to the SIR

model based on specifying the disease progression in each individual.

Studying the multiplot of all sixty time series, there is strong empirical evidence of

the same pattern of periodicity across most of the locations. There also appears to

be high correlation between population and measles counts. The latter pattern is

displayed most clearly by the maxima in London being over twice as large as those

in any other city, with Manchester, Birmingham, Leeds and Liverpool also having

high numbers. The plots of the total summation of cases (the "total UK counts")

and that without London (the "capital-less UK counts") are more similar than one

would expect from the high numbers of cases in London. This suggests that either

most locations have a very similar oscillatory pattern or the capital-less UK counts

are large enough to prevent London dominating the total UK counts, even though the

number of cases in each individual location is relatively small compared with London.

The observation times of the local maxima and minima ("peaks" and "troughs") of

the total UK and capital-less UK counts are displayed in Table 5.1 below.

The average lag between both maxima and minima suggests a two-yearly period-

Table 5.1: Locations of extreme values
UK maxima UK exc London UK minima UK exc London

maxima minima
33 32 47 47
83 83 99 99
135 135 150 150
189 190 203 202
238 238 254 254
294 294 306 306
345 345 360 360
398 398 410 410
448 449 462 463
499 499 515 515
554 551 566 566

icity. However the pattern is asymmetric, with the lowest counts observed be-

tween 12 and 16 fortnights after the highest counts, rather than the 26 one would
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Figure 5.1: Multi-plot of the measles counts in 60 UK cities
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Figure 5.2: Plots of all UK measles counts, including and excluding London
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see with a simple sin or cosine curve with period 52. The highest counts are ob-

served in early spring (late February to mid-April) while the lowest counts are

6.5 to 7 months later, in early to mid-October. There is also a varying degree of

minor peaks and troughs in the data, giving the plot a similarity to a combina-

tion of cos
(
πt
p

)
and cos

(
2πt
p

)
. This double periodicity might best be modelled as

a latent process of the form (A2 cos2 (ωt+ ϕ) + cos2 (δt+ ψ)) or the simpler form

(1 + cos (2ωt+ 2ϕ)) = 1
2
(3 + 4 cos (2ωt+ 2ϕ) + cos (4ωt+ 4ϕ)) or a combination of

latent process and trigonometric regressors. The "major-minor" pattern is probably

due to the measles virus "taking" too many "victims" in the �rst year to maintain a

large enough population to infect so many the next year, but the number of suscepti-

ble individuals recovering by the third year and so on. In many respects the measles

counts can be thought of as predator-prey population statistics, with the infectious

individuals acting as the predator and susceptible people as the prey.

A model for measles in the UK would ideally incorporate all potentially impor-

tant covariates such as weather statistics, such as temperatures or precipitation, and

population statistics such as size and birth rates. As measles is a respiratory disease

transferred via nasal and oral �uids, infection is dependent on the amount of close

contact between susceptible people. This is a factor that is likely to increase as pop-

ulation does or when people spend more time indoors due to cold or wet weather.

Considering the role of contact and the fact that the majority of measles infections

are in infant-school-age children, an indicator variable to distinguish between observa-

tions sampled during term-times and during holidays might also be important. Over

twenty-three years, a large number of children will be born and reach the vulnerable

age for measles. The birth rate or sub-population size is thus likely to be the main

factor apart from the periodic components in explaining large di�erences in counts

during di�erent years. This was the conclusion reached in Finkenstadt and Grenfell

(1998) where the e�ects of population size and both current and delayed birthrates,

on both epidemic size and disappearance-reemergence cycles, were studied in depth.
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Location-speci�c covariates such as regional population density and location isola-

tion, which do not apply to the total case counts considered here, were also studied.

Overall, potentially important regressors are:

• Time, not only as a linear function. If cases are decreasing in the long term,

the rate could be logarithmic or negative exponential.

• Yearly seasonal function of the formA cos
(
2πt
26

)
+B sin

(
2πt
26

)
. This could account

for much of the variation caused by seasonal climate changes.

• Total population, birth rate and sub-population consisting of the susceptible

age group. The third is probably less thoroughly recorded than the other two

but would be the most informative. Although both will have some signi�cance,

current birth rates would be expected to have a bigger e�ect on counts several

years in the future than on present counts, while changes in the total population

do not always match those in the vulnerable sub-population.

• Weather patterns, both seasonal and otherwise. Temperatures are seasonal

in the long term but can vary greatly in the short term and precipitation is

unpredictable though one might expect more in the winter. Rare occurrences

such as heatwaves, droughts or �oods could also signi�cantly a�ect the counts

in certain years via shared accommodation or high stress levels.

5.2 Building models for measles case counts in the

UK

After consideration, we decided to �t a model to the total measles case counts in

the UK rather than at any individual location. There are several types of potentially

signi�cant covariate, both seasonal and unseasonal. The classes of seasonal covariates

are:

• Trigonometric functions of annual, biennial and maybe other periodicities. The

most signi�cant frequencies will be estimated using the RFT approach.
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• Previous observation yt−1 or its logarithm. The latter gives a model which can

be rewritten as yt ∼ Po(yγt−1x
T
t θ).

• Weather statistics. After preliminary investigation, the Meterological O�ce

Hadley Centre data sets for Central England appear to be the best represen-

tations of UK weather patterns. These data sets consist of the average rainfall

and average, maximum and minimum temperatures recorded daily in a triangle

bordered by Lancaster, Bristol and London. These daily �gures will be av-

eraged, maximised or minimised over fortnightly intervals to provide weather

regressors for our model.

The non-seasonal covariates also fall into three groups, namely:

• Trend functions. We shall consider the �rst four powers, the logarithm and the

positive and negative exponentials of t
100

.

• Indicator variable. A binary indicator taking value 1 during time intervals

estimated to overlap with school holidays and 0 otherwise.

• Birth statistics, both past and present. The birth counts for each of the sixty

locations, recorded annually for the same twenty-three years as the measles

survey, and those for the whole of the UK over a much longer time period.

Figure 5.3 displays the total birth counts for the sixty locations, the total for the

�fty-nine locations excluding London and the UK birth counts, after dividing

by their respective means. The sixty-city birth counts show a misleading jump

corresponding to the rede�nition of London Borough in 1965, while the 59-city

and UK counts are similar in pattern. This suggests that analysing just the

total of the measles case counts in the �fty-nine cities excluding London as a

representation of the whole of the UK would be better if we wish to include birth

statistics in the model. The 59-city births are likely to be more closely correlated

to the data, but the UK births are not restricted to 1944-1966, allowing for the

inclusion of longer-lagged birth statistics without reducing the data set.
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Figure 5.3: Plots of the standardised yearly birth counts for the UK, the 60 locations
and the 59 locations excluding London
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We will start by comparing the null model with the models incorporating one

set of each of the covariates with oscillatory behaviour. Table 5.2 below displays

the AIC, BIC and log-likelihood of the models with intercept only, with the four

weather parameters, with a yearly trigonometric function, with the previous obser-

vation and with the logarithm of the previous observation. Figure 5.4 displays the

actual measles counts with line plots of the counts predicted by each model. Both

Table 5.2: Goodness-of-�t statistics for periodic models
Model AIC BIC Log-likelihood
Null 1180213 1180549 -590105.6

Weather 1120063 1121407 -560027.5
Annual function 849084.8 850092.8 -424539.4
Annual-biennial 188218.1 189898.1 -94104.07
Previous count 250410.3 251082.3 -125203.1
Previous log 74156.94 74828.94 -37076.47

the goodness-of-�t statistics and the plot of �tted values indicate that the model

with single covariate log(Yt−1) is by far the best �tting model. As this model can

be rewritten as E(Yt|Yt−1) = AY γ
t−1, we shall refer to this as the linear observation-

driven (LOD) model. The model with single covariate Yt−1, denoted the exponential

observation-driven (EOD) model, and that with annual and biennial trigonometric

covariates, also both approve the model �t to the data, both graphically and statisti-

cally compared with the other parameter-driven models. The annual-biennial model

is better at capturing the major-minor peak pattern of the data, while the EOD

model is more suited to accounting for the variations in biennial maxima. The clear

under and over-estimation by both models occurring during the times corresponding

to the peaks and troughs of the data however cause large deviance compared with

the LOD model. Graphically, the models with weather statistics and with a yearly

trigonometric function appear to be equally poor-�tting, but the lower log-likelihood

and information criteria of the latter indicate that temperatures and rainfall are less

of a source of variation than an annual cycle. Bearing this in mind, we shall look for

hidden periodicities in the measles counts under the LOD model, using the Discrete
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Figure 5.4: Plot of the UK measles counts in histogram mode and the �tted values
for the null model and four single regressor-type models. The values for the previous
logarithm model, previous observation model, weather covariate model, annual and
annual-biennial trigonometric function models and null model are shown by the solid
red line, the dot-dashed green line, the dashed pink line, the dotted cyan line, the
dotted navy line and the solid black line respectively.
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Fourier Transform estimator. We wish to account for the locations and relative am-

plitudes of maximum and minimum values over time using trigonometric functions

rather than the precise shape of the data curve. To simplify phase-shift and goodness-

of-�t estimation, any signi�cant frequencies will be added to the model as log-linear

trigonometic covariates rather than as trigonometric components of a linear latent

process. Figure 5.5 shows the real part of the DFT, along with a subsection to better

locate the maximising values. The tallest peak at 10, corresponding to a frequency of

2π/26, indicates that the measles counts have yearly periodicity as well as short-term

dependence. The two shorter peaks at 5 and 30 suggest that frequencies of π/26 and

3π/13 might also be signi�cant. To test this, the GLM estimators of four extensions

of the LOD model are calculated and their goodness-of-�t statistics compared. These

models incorporate functions with frequency π/13, with frequencies π/13 and π/26,

with frequencies π/13 and 3π/13 and with frequencies π/13, π/26 and 3π/13. The

results are displayed in Table 5.3 below. The large di�erence between the basic LOD

Table 5.3: Goodness-of-�t statistics for the LOD model with added trigonometric
terms
Model periods AIC BIC Log-likelihood

None 74156.94 74828.94 -37076.47
26 53025.86 54369.86 -26508.93

26 and 52 46644.07 48660.07 -23316.04
26 and 26/3 47359.81 49375.81 -23673.91

26, 52 and 26/3 40865.95 43553.95 -20424.98

model and that with annual periodicity, in the values of all three statistics, supports

the inclusion of a trigonometric function with period 26. The peaks on the DFT

corresponding to periods 52(two years) and 26/3(four months) were of equal height,

suggesting that either both or neither were signi�cant. Each pair of goodness-of-�t

statistics for the two corresponding double-period LOD model models support this,

being close in value to each other and signi�cantly smaller than those for the annual

LOD model. This suggests that three trigonometric functions, with four-monthly,

annual and biennial periods respectively, would be optimal. This is supported by the

AIC, BIC and log-likelihood for the three-period model being almost equally small

relative to those for the annual-biennial model and those for the four-month-annual
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Figure 5.5: Plots of values 1-130 and 1-40 for the DFT of the covariance function
estimators for the LOD model, calculated up to lag 260
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model.

As mentioned previously, the data plot of UK measles counts somewhat resembles a

trigonometric function proportional to A cos
(
πt
13

)
+cos

(
πt
26

)
or its exponential and we

have strong hypotheses why a childhood respiratory disease would follow such a pat-

tern. Thus the annual and biennial periodicities indicated by the DFT estimator are

not unexpected. The four-month period, in contrast, is not apparent in the data plot

and there is no obvious explanation why it should be almost as signi�cant a factor as

the two-yearly period. It is likely that the absence of an obvious four-month period

from the plot is due to much of the di�erence between variables distributed around

exp
(
A cos

(
πt
13

)
+B cos

(
πt
26

))
and around exp

(
A cos

(
3πt
13

)
+B cos

(
πt
26

)
+ C cos

(
πt
13

))
being small enough to attribute to random variation. Given that most of the minor

peaks and a few of the major peaks are rather jagged, part of the signi�cance of the

four-month period could be due to much of the deviation from the two-period model

being accounted for by a third trigonometric function with a short period, even when

this deviation is purely random. Another potential explanation why measles case

counts appear to be dependent on a four-month cyclic process is the e�ect of school

holidays on measles infection. Primary-school children are likely to be exposed more

to their close kin and less to people their own age during school holidays. Even if

a school is very local and a family does not travel during holidays, the structure of

the day will also be di�erent, which could alter both the display and the reporting of

symptoms. Although the three school terms are not usually of equal length, due to

the length of the summer holiday and the high variation in the temporal location of

the Easter holiday, the four-month trigonometric function might still be accounting

well for variations in measles case counts caused several times annually by changes in

disease transmission and expression during school holidays. Taking this into account,

it seems reasonable to infer that the three-period LOD model is optimal at this stage.

Later we shall investigate whether an alternative measure of holiday e�ects, such as

an indicator variable, could replace the four-month trigonometric functions.

Next we shall see if adding any of the weather statistics to the three-period LOD

model improves the �t further. From the statistics in Table 5.2, the weather-only
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model is better-�tting than the null model, indicating that temperatures and rainfall

do have some e�ect on the measles case counts. However, the relatively poor �t of

the weather-statistics model compared with the other single-set models suggests that

any improvements in �t will be small compared with those achieved previously by

adding trigonometric terms.

The GLM estimates of �ve triple-period LOD models, with each one of the weather

measurements and with all four, are calculated and their goodness-of-�t statistics are

displayed in Table 5.4 below, together with those for the three-period LOD model

found to be optimal before. As one would expect whenever more covariates are

Table 5.4: Goodness-of-�t statistics for the three-period LOD model with added
weather statistics

Model AIC BIC Log-likelihood
Triple period 40865.95 43553.95 -20424.98
Mean temp 40848.61 43872.61 -20415.31
Min temp 40865.1 43889.1 -20423.55
Max temp 40867.6 43891.6 -20424.8

Rain 40867.59 43891.59 -20424.8
All weather 40761.96 44793.96 -20368.98

added to a model, there is some decrease in the log-likelihoods of the models with a

single weather statistic and a larger decrease in that of the model with all four. These

decreases, however, are very small and all the BICs and the AICs of three of the �ve

models are larger than those of the prior three-period LOD model. This suggests

that, despite earlier discussion of the likely e�ects of rainfall and temperatures on

diseases via alterations in contact, none of the weather statistics have any signi�cant

e�ect on the measles case counts. It is possible that this is due to a combination

of two factors; much of the variation that could be caused by weather is already

being accounted for by the annual trigonometric function, and the two susceptible

age groups; pre-school and primary school children, being less exposed to and less

a�ected by the weather respectively than groups of individuals in the UK.

After studying the signi�cance of previous observations, weather statistics and trigono-

metric functions, the optimal periodic-covariate model appears to be the linear observation-

driven model with four-monthly, annual and biennial two-parameter trigonometric
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functions. We shall now see if the �t can be improved using four di�erent groups of

non-periodic covariates - a binary indicator for school holidays, a seven-variable set

of the �rst four powers, the postive and negative exponentials and the logarithm of

time, the annual births for the 59 cities from ten years past to the current year and

the annual births for the UK from ten years past to the current year. Parameter

estimates for the three-period LOD model with the covariates from each group are

calculated and the goodness-of-�t statistics for each model are displayed in Table 5.5

below.

It is easy to see that the holiday-indicator is the only type of covariate which, when

Table 5.5: Goodness-of-�t statistics for the three-period LOD model with annual
birth rates, time polynomial and holiday-time indicator

Model AIC BIC Log-likelihood
Triple period 40865.95 43553.95 -20424.98
59 city births 38529.73 44913.73 -19245.87
UK births 38475.24 44859.24 -19218.62
Times 40018.34 45058.34 -19994.17

Holiday indicator 40232.76 43256.76 -20107.38

added to the three-period LOD model, reduces both the AIC and BIC. The AICs and

log-likelihoods of the model with seven time covariates and the two models with eleven

lagged birth counts are lower than those of the prior triple-period LOD model while

the BICs are larger. This suggests that, as expected, time or birth rates do have some

e�ect on measles case counts, but models containing all time or birth covariates are

somewhat over-parameterized. Bearing this in mind, we shall take the three-period

LOD model with holiday indicator as the new optimal model, then investigate the

signi�cance of individual lagged births or time covariates one-by-one rather than as

a group. The BICs of the eleven models with one k-year lagged 59-city birth statis-

tic (k= 0, 1, . . . , 10) are �rst compared with each other, as are those of the eleven

models with one k-year lagged UK birth statistic and those of the seven models with

one time measurement. The second, third and fourth rows of Table 5.6 display the

goodness-of-�t statistics for the models from each set with lowest BIC. The models

which include 8-year-lag UK and 59-city births respectively generate a smaller BIC



CHAPTER 5. ANALYSIS OF MEASLES CASE COUNTS IN THE UK 125

Table 5.6: Goodness-of-�t statistics for the holiday-indicator LOD model with the
optimal single birth-rate, optimal pair of birth rates and optimal single time regressor.

Model AIC BIC Log-likelihood
Holiday indicator 40232.76 43256.76 -20107.38
UK 8-year lag 39750.66 43110.66 -19865.33

59-city 8-year lag 39730.02 43090.02 -19855.01
Negative exp 39925.88 43285.88 -19952.94

UK 7+8-year lag 39391.37 43087.37 -19684.69
59-city 7+8-year lag 39404.71 43100.71 -19691.35

than the model without births. However the BIC is larger for a model including

the negative-exponential time covariate. This suggests that the measles case counts

have no signi�cant trend in time but might be dependant on at least one of previous

year's births. Thus the next stage is the comparison of the BICs of the 10 models

with 8-year-lag UK birth and one other of the k-year lag births and the same for the

59-city births. The BICs in rows 5 and 6 of Table 5.6 suggest 7 and 8-year-lagged UK

births are both signi�cant while only the 8-year-lagged UK city births are signi�cant.

It is easy to see that all the goodness-of-�t statistics are smallest for the three-period

LOD model with holiday indicator and 7 and 8-year-lag UK births, which we shall

denote the 3P 7-8-lag LOD model with indicator. It is somewhat surprising that

the best-�tting model appears to be that depending on birth rates in the whole of

the UK, as one would expect the total measles case counts summed over the �fty

nine locations to be more closely correlated with the total number of births in those

locations. A possible explanation of this is that, due to daily commuting both of

susceptible individuals and carriers, the measles case counts in any one location also

depend on the number of births in a certain area around that location. This factor

could have the cumulative e�ect of making UK birth rates apparently a better re�ec-

tion of measles case counts summed over the �fty nine locations than the total birth

rates in those locations. In other words, the birth rates in separate locations are be-

ing recorded over too narrow an area. It is also unexpected that the most signi�cant

birth rates appear to be those counted seven and eight years prior, representing the

current population of seven and eight-year-olds. It could be that, due to the relative

lack of information given in annual birth rates when the case counts are fortnightly,
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there is too little di�erence between the births in di�erent years to explain much vari-

ation in measles case counts, so just one or two lagged birth rates are useful in the

model as a representation of the average susceptible population during a particular

year. It could be a coincidence that it is the populations of seven and eight-year olds

that appear to best ful�l this role, or it could be that between the ages of seven and

eight is when sub-population size is most important due to an optimal combination

of socialising and susceptibility - seven and eight-year-olds probably have a larger

social circle than younger children, making them more exposed, but are less likely to

have already had measles than older children.

We mentioned earlier that the four-month trigonometric function might be less sig-

ni�cant in a model with a holiday indicator. Other periodic functions might also

have phase shifts close to 0 or π, making either the sin or cos term surplus to re-

quirements. Thus we shall compare the goodness-of-�t statistics of the 3P 7-8-lag

LOD model without indicator, without the least signi�cant trigonometric term and

without one of the two parts of the four-month period function to see if the parsimony

of our model can be improved while maintaining a good �t.

The R-output summary of parameter estimates and their properties, for the covari-

Table 5.7: Parameter estimates and their properties
Covariate Par.estimate Std. Error z value Pr(>|z|)
(Intercept) 1.04 0.0241 43.01 <2e-16
log(yt−1) 0.866 0.00249 348.52 <2e-16
cos(πt/13) 0.0791 0.0017 46.52 <2e-16
sin(πt/13) 0.129 0.00198 65.08 <2e-16
cos(3πt/13) -0.110 0.00149 -73.87 <2e-16
sin(3πt/13) 0.0370 0.00137 27.09 <2e-16
cos(πt/26) -0.181 0.00263 -68.67 <2e-16
sin(πt/26) 0.0372 0.00210 17.71 <2e-16
holiday indicator 0.0609 0.00246 24.78 <2e-16
8-year-lag UK birth 0.000608 0.0000215 28.33 <2e-16
7-year-lag UK birth -0.00059 0.0000312 -18.93 <2e-16

ates in the 3P 7-8-lag LOD model with indicator variable, is displayed in Table 5.7.

Although the signi�cance tests shown in the fourth and �fth columns indicate that
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all six trigonometric covariates are highly signi�cant, sin(πx/26) has the smallest z-

value, so we shall see what e�ects removing it has on goodness-of-�t compared with

the four-month period terms.

The statistics in Table 5.8 indicate that all three four-month-period terms - the

Table 5.8: Goodness-of-�t statistics for the 3P 7-8-lag LOD model with and without
binary indicator, without sin(πt/26), without cos(3πt/13) and without sin(3πt/13).

Model AIC BIC Log-likelihood
All 39391.37 43087.37 -19684.69

Without indicator 40004.17 43364.17 -19992.08
Without sin(πt/26) 39702.63 43062.63 -19841.32
Without cos(3πt/13) 44915.36 48275.36 -22447.68
Without sin(3πt/13) 40124.23 43484.23 -20052.11

binary indicator and the two trigonometric functions with frequency 3π/13 - are

highly signi�cant, as the AICs, BICs and log-likelihoods of the models with one of

these covariates removed are all larger than the corresponding statistics of the �full�

model. This di�erence is particularly noticeable when the cos(3πt/13) term is re-

moved from the model. In contrast, the model without sin(πt/26) has a slightly

smaller BIC, suggesting that this term may not be signi�cant. Although the AIC

and log-likelihood of the model with sin(πt/26) are still slightly smaller, this is only

to be expected when comparing two models, one of which is a more parsimonious

version of the other. Thus our �nal optimal model for �tting the fortnightly measles

case counts between 1954 and 1966 is the LOD model with trigonometric covari-

ates sin(πt/13), cos(πt/13), cos(πt/26), cos(3πt/13) and sin(3πt/13), binary indicator

variable for school holidays and 7 and 8-year-lagged birth statistics for the whole of

the UK. The yαt−1 term is the only part of this model which also appears in SIR-type

models such as those developed in Grenfell et.al. (2002) and in Finkenstadt and

Morton (2005). As in the Poisson time series model, yαt−1 plays a key role in the

total number of infections at time point t in both of these papers and the estimate

α̂ = 0.866 is similar to those estimated in Grenfell et.al. (2002) and in Finkenstadt

and Morton (2005), table 2, although there is no formal link between the α values

in the di�erent models. The two types of model also both make use of covariates
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such as lagged birth rates and periodic functions, although the model structures are

very di�erent and the SIR models incorporate many localised covariates but not de-

terministic trigonometric functions. Unlike the annual births for the 59 cities, which

are available only for the same time period as the case counts themselves, annual

births in the UK are recorded from the eighteenth century to the present. Thus

our optimal model has the advantage over any model with lagged births from the

59 locations that it is extendable to all twenty-three years of measles case counts.

Figure 5.6 displays the plot of all twenty-three years of UK measles case counts and

a line plot of the values predicted by the LOD model with trigonometric covariates

sin(πt/13), cos(πt/13), cos(πt/26), cos(3πt/13) and sin(3πt/13), binary indicator vari-

able for school holidays and 7 and 8-year-lagged birth statistics for the whole of the

UK.

5.3 Potential extensions of the measles analysis to

multivariate data sets and to other diseases

There are several alternatives to the univariate time series for analysing measles

counts, including

1. Taking a single location and building a model for the counts observed there

alone.

2. Combining several locations judged to be in close proximity to create a single

time series of larger values and then building a model for this.

3. Modelling all 60× 598 observations or a subset as a longitudinal data sample.

4. Taking all 60 × 598 observations (or a subset) as a data matrix of up to 598

observations of a multidimensional variable or a 598×60 spatial-temporal data

set
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Figure 5.6: Plot of all 23 years of UK measles counts in histogram mode and the
�tted values for the corresponding optimal model
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All four models have pros and cons. (4), the multivariate or spatial-temporal model,

would be the most thorough as all the individual observations can be used while

correlation between counts in di�erent locations can also be analysed. The longitu-

dinal model (3) would also use all the data but would necessitate an assumption that

observations are only correlated within locations and through the covariates. This is

potentially a big assumption in the late 20th century due to the prevalence of daily

commuting throughout modern Britain. Both models would be more complex and so

require more computing power than the time-series models (1) and (2) which di�er

from that developed previously for the whole of the UK only in the subset of the

data used. This is more pronounced for the multivariate model than the longitudinal

model due to the former's complex, non-block-diagonal covariance matrix. The only

extra complications in using model (1) would be the occurence of zeros and lack of

smoothing compared with the Total-UK model. (2) would have some smoothing and

fewer zeros than (1), but would need preliminary investigation into the proximity of

locations before one can infer which groups of cities/towns can be thought of as a

larger sub-population.

As mentioned previously, the apparent dependence on UK-wide births rather than

those particular to the �fty-nine locations might indicate that daily commuting, chil-

dren going to school in larger towns and adults commuting to work, has signi�cant

in�uence on measles case counts. Children who travel longer distances to school or

have commuting parents could have a higher likelihood of infection due to extra ex-

posure during travel on public transport, especially considering that people do not

have to be infected with a respiratory virus to act as short-term carriers. Children's

daily commuting also raises a important question about the counts themselves - where

are they taken? Are some infected children in Greater Manchester counted as cases

in Manchester, their school's location, or as cases in their home-town on the out-

skirts of Manchester? (Oldham, Bolton, etc) Another type of "movement" in the

UK which could cause variation when looking at several locations is seasonal holi-

day travel. People moving from their home towns to coastal places such as Brighton

and Yarmouth for holidays could cause a temporary shift in case counts during July
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or August, probably best de�ned either as an indicator variable or as some sort of

measure of population shift during summer. Any model for measles in the UK as a

whole gives one little idea of the e�ects of local population or local birth rates on the

case counts observed in individual locations. These factors together with the e�ects

of commuting suggest that there is much more potential for extending the analysis

performed so far to a longitudinal, multivariate or spatial-temporal data set than to

a time series model for a single location or sub-population. Although a longitudi-

nal model would necessitate the unlikely assumption of location independence, one

might still use covariates such as the number of neighbours a city has, the population

statistics of those neighbours or even the previous case counts of close neighbours to

examine the interactions between locations. Covariates from other locations could

also be weighted to take into account the di�erent distances between neighbours. The

analysis of a multivariate or spatial-temporal data set would be more complicated,

but could model the e�ects of other locations on mean and autocorrelation more

e�ciently as well as the cross-correlation of locations. The main sources of interest

which could be studied in such analyses, opposed to the analysis of measles in just a

single location, include the di�erences in the spread of measles between areas of high

and of low population and the factors, such as population, relative isolation or loca-

tion within the UK, which could a�ect how quickly measles re-emerges after dying

o� in a small town and vice-versa. One important modi�cation which would have

to be made before we could analyse measles case counts location-by-location is the

adjustment of previous case counts. While the use of log(yt−1) as a covariate in the

LOD model for the whole of the UK is not problematic due to the absence of zeros

in the data, yt = 0 multiple times in many of the smaller UK locations, causing ys to

be mistakingly estimated as 0 for all s > t. One way to avoid yt−s repeatedly acting

as an absorbing state would be to replace yt−1 by a strictly positive transformation

y∗t−1. Cameron and Trivedi (1998) suggest one of the two simple transforms

y∗t−1 = max(c, yt−1)
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and

y∗t−1 = c+ yt−1

, where c could, in increasing complexity, be a known constant, a extra �xed param-

eter to be estimated, or a process designed to predict the re-emergence of measles

after a period of zero case counts.

When one considers how little factors such as weather statistics or birth rates vary

from place to place within the UK compared with many other countries, the im-

portance of models which can incorporate location-varying covariates become even

more apparent. A developing country such as India, where much of the population

is still rural, will have huge di�erences in wealth-related factors such as family size

and health statistics, which in turn will cause signi�cant di�erences in disease trans-

mission via di�erent levels of disease exposure and resilience. Although the USA

is similar to the UK in relative birth rates and health, it has enormous locational

di�erences in weather. Patterns of exposure through socialising are likely to di�er

greatly between the sub-tropical, humid Florida swamp, the hot, arid deserts of Ari-

zona and sub-arctic Alaska. High di�erences in precipitation in particular also cause

large di�erences in movement and population spread - scarcity of water means that

most people in the arid south-west are clustered in one of a relatively small num-

ber of isolated urban areas, while people in wetter regions, particularly those with a

mediterranean or sub-tropical climate, are much more evenly spread and much less

isolated. These di�erences in population spread, movement and social patterns are

likely to cause signi�cant di�erences in disease transmission.

The complexity of the models needed to analyse multi-location disease counts in

countries such as the USA or India would be very high. Not only would there be

a variance matrix to estimate as well as a large number of mean parameters, the

correlation between locations could be highly dependent on weather or birth statis-

tics. This complexity suggests an additional direction for expansion; the utilisation

of traditionally empirically robust methods such as expectation-maximisation (EM)

or Markov-Chain-Monte-Carlo (MCMC) algorithms to make inferences about multi-

variate or spatial-temporal periodic count data models.
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