8 research outputs found

    Mechanism of Action of l-CDB-4022, a Potential Nonhormonal Male Contraceptive, in the Seminiferous Epithelium of the Rat Testis

    No full text
    The present study was conducted to elucidate the possible molecular mechanisms involved in the antispermatogenic activity of l-CDB-4022, an indenopyridine. In this study 45-d-old male Sprague-Dawley rats were treated with a single oral dose of l-CDB-4022 (2.5 mg/kg) or vehicle, and blood and testes were collected at various time points. The rate of body weight gain was not affected, but a significant loss of testes weight was induced by l-CDB-4022. Serum hormones were assayed using specific RIAs or ELISAs, and testicular protein and RNA were analyzed by Western blotting and RT-PCR, respectively. There was a significant decrease in inhibin B and concomitant increase in FSH in serum from l-CDB-4022-treated rats, but serum levels of activin A, testosterone, and LH were unchanged. Western analysis of testicular lysates from l-CDB-4022-treated rats exhibited phosphorylation of ERK1/2 at 4 h and later time points. Loss of nectin/afadin complex occurred at 48 h, but there was an increase in levels of integrin-β1, N-cadherin, α-catenin, and β-catenin protein at 24 h and later time points. Increase in expression of Fas ligand and Fas receptor was detected 8 and 24 h after l-CDB-4022 treatment. The ratio of the membrane to soluble form of stem cell factor mRNA was decreased. Immunohistochemical analysis of testicular sections indicated a dramatic disruption of the Sertoli cell microtubule network in l-CDB-4022-treated rats. Collectively, these results suggest that l-CDB-4022 activates the MAPK pathway, reduces expression of prosurvival factors such as the membrane form of stem cell factor, alters expression of Sertoli-germ cell adherens junction proteins, disrupts Sertoli cell microtubule structure, and induces the proapoptotic factor, Fas, culminating in germ cell loss from the seminiferous epithelium
    corecore