40 research outputs found

    Improved detection of fluorescently labeled microspheres and vessel architecture with an imaging cryomicrotome

    Get PDF
    Due to spectral overlap, the number of fluorescent labels for imaging cryomicrotome detection was limited to 4. The aim of this study was to increase the separation of fluorescent labels. In the new imaging cryomicrotome, the sample is cut in slices of 40 μm. Six images are taken for each cutting plane. Correction for spectral overlap is based on linear combinations of fluorescent images. Locations of microspheres are determined by using the system point spread function. Five differently colored microspheres were injected in vivo distributed over two major coronaries, the left anterior descending and left circumflex artery. Under absence of collateral flow, microspheres outside of target perfusion territories were not found and the procedure did not generate false positive detection when spectral overlap was relevant. In silico-generated microspheres were used to test the effect of background image, transparency correction, and color separation. The percentage of microspheres undetected was 2.3 ± 0.8% in the presence and 1.5 ± 0.4% in the absence of background structures with a density of 900 microspheres per color per cm3. The image analysis method presented here, allows for an increased number of experimental conditions that can be investigated in studies of regional myocardial perfusion

    Model prediction of subendocardial perfusion of the coronary circulation in the presence of an epicardial coronary artery stenosis

    Get PDF
    The subendocardium is most vulnerable to ischemia, which is ameliorated by relaxation during diastole and increased coronary pressure. Recent clinical techniques permit the measuring of subendocardial perfusion and it is therefore important to gain insight into how measurements depend on perfusion conditions of the heart. Using data from microsphere experiments a layered model of the myocardial wall was developed. Myocardial perfusion distribution during hyperemia was predicted for different degrees of coronary stenosis and at different levels of Diastolic Time Fraction (DTF). At the reference DTF, perfusion was rather evenly distributed over the layers and the effect of the stenosis was homogenous. However, at shorter or longer DTF, the subendocardium was the first or last to suffer from shortage of perfusion. It is therefore concluded that the possible occurrence of subendocardial ischemia at exercise is underestimated when heart rate is increased and DTF is lower

    Coronary microvascular resistance: methods for its quantification in humans

    Get PDF
    Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses

    Twin reversed arterial perfusion sequence is more common than generally accepted

    No full text
    Approximately 75% of monozygotic twin pregnancies share one monochorionic placenta where placental anastomoses are virtually always present to connect the two fetoplacental circulations. These anastomoses cause several serious complications such as acardiac twinning. Acardiac twins lack a functional heart but nevertheless show fetal growth because the normal pump twin perfuses the acardiac body through arterioarterial (AA) and venovenous (VV) anastomoses. The widely accepted 1% monochorionic acardiac incidence dates back to 1944 and the associated 1:35,000 pregnancies to 1953. Our aim was to update this analysis. We accepted the 1% (actually 1.1%) monochorionic acardiac incidence due to lack of more precise data, included the recently observed 58% early cessation of acardiac development as well as consequences of assisted reproductive technology, and assessed the incidence of acardiac twinning under conditions of AA-VV anastomoses. Early acardiac monochorionic twinning increased from 1.1% to 1.1/(1-0.58) = 2.6%, from 1:35,000 to 1:9,500 to 11,000 pregnancies, depending on number and method of assisted reproductive technology, and occurs in approximately 1:8 AA-VV anastomoses-containing monochorionic placentas. Early acardiac twinning is not a rare event. The 1944-based 1% acardiac monochorionic incidence has a weak basis and could therefore be (much) larger. Knowing this incidence more precisely may contribute to our knowledge of embryonic splitting in unequal cell masse

    A mathematical model of twin-twin transfusion syndrome with pulsatile arterial circulations

    No full text
    The twin-twin transfusion syndrome (TTTS) is a severe complication of monochorionic twin pregnancies caused by a net transfusion of blood from one twin (the donor) to the other (the recipient) through placental anastomoses. To examine the pathophysiology of TTTS evolving through clinical stages I to IV, we extended our mathematical model to include pulsating circulations propagating along the arterial tree as well as placental and cerebral vascular resistances, and arterial wall thickness and stiffness. The model demonstrates that abnormal umbilical arterial flow (TTTS stage III) in the donor twin results from increased placental resistance as well as reduced resistance in the cerebral arteries. In contrast, recipient twin abnormal umbilical arterial flow requires a significantly greater increase in placental resistance, resulting from the compressive effects of high amniotic fluid pressure. Thus simulated abnormalities of donor umbilical arterial pulsations occur in the donor more commonly and earlier than in the recipient. The "normal" staging sequence (I, II, III, IV) correlates with the presence of compensating placental anastomoses, constituting the majority of monochorionic twin placentas. However, TTTS stage III may occur before manifestations of stage II (lack of donor bladder filling), in our model correlating with severe TTTS from a single arteriovenous anastomosis, an infrequent occurring placental angioarchitecture. In conclusion, this mathematical model describes the onset and development of the four stages of TTTS, reproduces a variety of clinical manifestations, and may contribute to identifying the underlying pathophysiology of the staging sequence in TTT

    Acardiac twin pregnancies part III : Model simulations

    No full text
    Background: Acardiac monochorionic twins lack cardiac function but grow by passive perfusion of the pump twin's deoxygenated arterial blood through placental arterioarterial (AA) and venovenous (VV) anastomoses and by hypoxia-mediated neovascularization. Pump twins therefore must continuously increase their cardiac output which may cause heart failure. Our aims were: to adapt our twin-twin transfusion syndrome model for acardiac twin pregnancies, to simulate pump and acardiac twin development, and to examine the model for early prognostic markers of pump twin survival. Methods: We used an infinite acardiac placental resistance, based on placental dye injection studies and simulations, suggesting the AA-Acardiac-VV series resistance determines the pump twin's excess cardiac output. Pump and acardiac development were expressed by the pump's excess cardiac output versus its normal value, represented by pump/acardiac umbilical venous diameter (UVD) ratios. Results: UVD ratios distinguish between AA-VV anastomoses that do and do not cause hydropic pump twins. Pump twins can handle relative larger acardiac perfusion at later than earlier gestation. Both VV and acardiac resistances are significantly smaller than the AA resistance, based on respectively clinical data and acardiac blood volumetric growth. Conclusion: Our simulations support clinical results which show that UVD ratios aid in the prediction of pump twin risk. The AA anastomosis controls the future of both the pump and the acardiac. Correlation between acardiac size and pump twin risk is secondary to the AA size but remains clinically usable. These factors may aid in the development of methods for pump twin prognosis and the promotion of selective clinical interventions

    Arterio-venous flow between monochorionic twins determined during intra-uterine transfusion. Nonlinear decay of adult red blood cells

    No full text
    Recently, we derived equations relating the flow of adult red blood cells through a placental arterio-venous anastomosis with intra-uterine and post-natal measured adult hemoglobin concentrations. In this letter, we re-derived the equations, now including a more realistic nonlinear decay of adult red blood cells, and re-evaluated the measurement accuracy of the arterio-venous flow and the lifetime of the red blood cell
    corecore