120 research outputs found

    Issues in higher education policy : an update on higher education policy issues in 2004 in 11 Western countries

    Get PDF
    Higher education is a dynamic field. It is, however, also a field where changes don¿t take place overnight. This 2004 update report covers a period of 1.5 years, a period in which some earlier policy initiatives have been implemented and new ones have emerged. It is therefore not surprising to observe that many of the policy issues on the agenda in the previous Update Report (April, 2003) still are a topic of debate today.\ud The main part of the report are the descriptions of the current (2004) higher education debates and policy initiatives for each of the eleven IHEM countries, arranged in four themes educational and research infrastructure, finance, governance and quality. In conclusion, four `overarching¿ policy issues in contemporary European (and Australian) higher education are discussed. These issues are:\ud * The Bologna process and changing degree structures\ud * The changing organisation of research\ud * Financial accountability and responsibility\ud * Interactive governanc

    Clinical applications of 7T MRI in the brain

    Get PDF
    AbstractThis review illustrates current applications and possible future directions of 7Tesla (7T) Magnetic Resonance Imaging (MRI) in the field of brain MRI, in clinical studies as well as clinical practice. With its higher signal-to-noise (SNR) and contrast-to-noise ratio (CNR) compared to lower field strengths, high resolution, contrast-rich images can be obtained of diverse pathologies, like multiple sclerosis (MS), brain tumours, aging-related changes and cerebrovascular diseases. In some of these diseases, additional pathophysiological information can be gained compared to lower field strengths. Because of clear depiction of small anatomical details, and higher lesion conspicuousness, earlier diagnosis and start of treatment of brain diseases may become possible. Furthermore, additional insight into the pathogenesis of brain diseases obtained with 7T MRI could be the basis for new treatment developments. However, imaging at high field comes with several limitations, like inhomogeneous transmit fields, a higher specific absorption rate (SAR) and, currently, extensive contraindications for patient scanning. Future studies will be aimed at assessing the advantages and disadvantages of 7T MRI over lower field strengths in light of clinical applications, specifically the additional diagnostic and prognostic value of 7T MRI

    Synthesis and characterization of surface-grafted polyacrylamide brushes and their inhibition of microbial adhesion

    Get PDF
    A method is presented to prevent microbial adhesion to solid surfaces exploiting the unique properties of polymer brushes. Polyacrylamide (PAAm) brushes were grown from silicon wafers by atom transfer radical polymerization (ATRP) using a three-step reaction procedure consisting of immobilization of a coupling agent gamma-aminopropyltriethoxysilane, anchoring of an ATRP initiator 4-(chloromethyl)benzoyl chloride, and controlled radical polymerization of acrylamide. The surfaces were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ellipsometry, and contact-angle measurements. The calculated grafting density pointed to the presence of a dense and homogeneous polymer brush. Initial deposition rates, adhesion after 4 h, and detachment of two bacterial strains (Staphylococcus aureus ATCC 12600 and Streptococcus salivarius GB 24/9) and one yeast strain (Candida albicans GB 1/2) to both PAAm-coated and untreated silicon surfaces were investigated in a parallel plate flow chamber. A high reduction (70-92%) in microbial adhesion to the surface-grafted PAAm brush was observed, as compared with untreated silicon surfaces. Application of the proposed grafting method to silicone rubbers may offer great potential to prevent biomaterials-centered infection of implants.</p

    Hippocampal T2 hyperintensities on 7Tesla MRI

    Get PDF
    AbstractHippocampal focal T2 hyperintensities (HT2Hs), also referred to as hippocampal sulcal cavities, are a common finding on Magnetic Resonance (MR) images. There is uncertainty about their etiology and clinical significance. In this study we aimed to describe these HT2Hs in more detail using high resolution 7Tesla MR imaging, addressing 1) the MR signal characteristics of HT2Hs, 2) their occurrence frequency, 3) their location within the hippocampus, and 4) their relation with age. We also performed an explorative post-mortem study to examine the histology of HT2Hs.Fifty-eight persons without a history of invalidating neurological or psychiatric disease (mean age 64±8years; range 43–78years), recruited through their general practitioners, were included in this study. They all underwent 7Tesla MRI, including a T1, T2, and FLAIR image. MR signal characteristics of the HT2Hs were assessed on these images by two raters. Also, the location and number of the HT2Hs were assessed. In addition, four formalin-fixed brain slices from two subjects were scanned overnight. HT2Hs identified in these slices were subjected to histopathological analysis.HT2Hs were present in 97% of the subjects (median number per person 10; range 0–20). All HT2Hs detected on the T2 sequence were hypointense on T1 weighted images. Of all HT2Hs, 94% was hypointense and 6% hyperintense on FLAIR. FLAIR hypointense HT2Hs were all located in the vestigial sulcus of the hippocampus, FLAIR hyperintense HT2Hs in the hippocampal sulcus or the gray matter. Post-mortem MRI and histopathological analysis suggested that the hypointense HT2Hs on FLAIR were cavities filled with cerebrospinal fluid. A hyperintense HT2H on FLAIR proved to be a microinfarct upon microscopy.In conclusion, hippocampal T2Hs are extremely common and unrelated to age. They can be divided into two types (hypo- and hyperintense on FLAIR), probably with different etiology

    Поздравляем юбиляров!

    Get PDF
    23 февраля 2011 года исполнилось 75 лет со дня рождения главного инженера Днепродзержинской ГЭС — Кучерявого Владислава Семеновича.15 июня 2011 г. исполняется 70 лет ученому — гидроэнергетику, доктору технических наук, начальнику отдела расчетного обоснования ПАО "Укргидропроект", профессору, заведующему кафедрой гидротехнического строительства Харьковского государственного технического университета строительства и архитектуры Александру Исааковичу Вайнбергу

    Whole brain 7T-fMRI during pelvic floor muscle contraction in male subjects

    Get PDF
    Aim: The primary aim of this study is to demonstrate that 7-tesla functional magnetic resonance imaging (7T-fMRI) can visualize the neural representations of the male pelvic floor in the whole brain of a single subject. Methods: In total, 17 healthy male volunteers (age 20-47) were scanned in a 7T-MRI scanner (Philips Achieva). The scanning protocol consisted of two functional runs using a multiband echo planar imaging sequence and a T1-weighted scan. The subjects executed two motor tasks, one involving consecutive pelvic floor muscle contractions (PFMC) and a control task with tongue movements. Results: In single subjects, results of both tasks were visualized in the cortex, putamen, thalamus, and the cerebellum. Activation was seen during PFMC in the superomedial and inferolateral primary motor cortex (M1), supplementary motor area (SMA), insula, midcingulate gyrus (MCG), putamen, thalamus, and in the anterior and posterior lobes of the cerebellum. During tongue movement, activation was seen in the inferolateral M1, SMA, MCG, putamen, thalamus, and anterior and posterior lobes of the cerebellum. Tongue activation was found in the proximity of, but not overlapping with, the PFMC activation. Connectivity analysis demonstrated differences in neural networks involved in PFMC and tongue movement. Conclusion: This study demonstrated that 7T-fMRI can be used to visualize brain areas involved in pelvic floor control in the whole brain of single subjects and defined the specific brain areas involved in PFMC. Distinct differences between brain mechanisms controlling the pelvic floor and tongue movements were demonstrated using connectivity analysis
    corecore