28 research outputs found

    IQ and Blood Lead from 2 to 7 Years of Age: Are the Effects in Older Children the Residual of High Blood Lead Concentrations in 2-Year-Olds?

    Get PDF
    Increases in peak blood lead concentrations, which occur at 18–30 months of age in the United States, are thought to result in lower IQ scores at 4–6 years of age, when IQ becomes stable and measurable. Data from a prospective study conducted in Boston suggested that blood lead concentrations at 2 years of age were more predictive of cognitive deficits in older children than were later blood lead concentrations or blood lead concentrations measured concurrently with IQ. Therefore, cross-sectional associations between blood lead and IQ in school-age children have been widely interpreted as the residual effects of higher blood lead concentrations at an earlier age or the tendency of less intelligent children to ingest more leaded dust or paint chips, rather than as a causal relationship in older children. Here we analyze data from a clinical trial in which children were treated for elevated blood lead concentrations (20–44 ÎŒg/dL) at about 2 years of age and followed until 7 years of age with serial IQ tests and measurements of blood lead. We found that cross-sectional associations increased in strength as the children became older, whereas the relation between baseline blood lead and IQ attenuated. Peak blood lead level thus does not fully account for the observed association in older children between their lower blood lead concentrations and IQ. The effect of concurrent blood level on IQ may therefore be greater than currently believed

    Evaluation of Neurocognition in Youth with CKD Using a Novel Computerized Neurocognitive Battery

    Get PDF
    BACKGROUND AND OBJECTIVES: Neurocognitive problems in CKD are well documented; time-efficient methods are needed to assess neurocognition in this population. We performed the first study of the efficient 1-hour Penn Computerized Neurocognitive Battery (CNB) in children and young adults with CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We administered the Penn CNB cross-sectionally to individuals aged 8-25 years with stage 2-5 CKD (n=92, enrolled from three academic nephrology practices from 2011 to 2014) and matched healthy controls (n=69). We analyzed results from 12 tests in four domains: executive control, episodic memory, complex cognition, and social cognition. All tests measure accuracy and speed; we converted raw scores to age-specific z-scores on the basis of Philadelphia Neurodevelopmental Cohort (n=1790) norms. We analyzed each test in a linear regression with accuracy and speed z-scores as dependent variables and with (1) CKD versus control or (2) eGFR as explanatory variables, adjusted for race, sex, and maternal education. RESULTS: Patients with CKD (mean±SD eGFR, 48±25 ml/min per 1.73 m(2); mean age, 16.3±3.9 years) and controls (mean eGFR, 98±20 ml/min per 1.73 m(2); mean age, 16.0±4.0 years) were similar demographically. CKD participants had lower accuracy than controls in tests of complex cognition, with moderate to large effect sizes: -0.53 (95% confidence interval [95% CI], -0.87 to -0.19) for verbal reasoning, -0.52 (95% CI, -0.83 to -0.22) for nonverbal reasoning, and -0.64 (95% CI, -0.99 to -0.29) for spatial processing. For attention, patients with CKD had lower accuracy (effect size, -0.35 [95% CI, -0.67 to -0.03]) but faster response times (effect size, 0.44 [95% CI, 0.04 to 0.83]) than controls, perhaps reflecting greater impulsivity. Lower eGFR was associated with lower accuracy for complex cognition, facial and visual memory, and emotion identification tests. CONCLUSIONS: CKD is associated with lower accuracy in tests of complex cognition, attention, memory, and emotion identification, which related to eGFR. These findings are consistent with traditional neurocognitive testing in previous studies

    Design and methods of the NiCK study: neurocognitive assessment and magnetic resonance imaging analysis of children and young adults with chronic kidney disease

    Get PDF
    Abstract Background Chronic kidney disease is strongly linked to neurocognitive deficits in adults and children, but the pathophysiologic processes leading to these deficits remain poorly understood. The NiCK study (Neurocognitive Assessment and Magnetic Resonance Imaging Analysis of Children and Young Adults with Chronic Kidney Disease) seeks to address critical gaps in our understanding of the biological basis for neurologic abnormalities in chronic kidney disease. In this report, we describe the objectives, design, and methods of the NiCK study. Design/methods The NiCK Study is a cross-sectional cohort study in which neurocognitive and neuroimaging phenotyping is performed in children and young adults, aged 8 to 25 years, with chronic kidney disease compared to healthy controls. Assessments include (1) comprehensive neurocognitive testing (using traditional and computerized methods); (2) detailed clinical phenotyping; and (3) multimodal magnetic resonance imaging (MRI) to assess brain structure (using T1-weighted MRI, T2-weighted MRI, and diffusion tensor imaging), functional connectivity (using functional MRI), and blood flow (using arterial spin labeled MRI). Primary analyses will examine group differences in neurocognitive testing and neuroimaging between subjects with chronic kidney disease and healthy controls. Mechanisms responsible for neurocognitive dysfunction resulting from kidney disease will be explored by examining associations between neurocognitive testing and regional changes in brain structure, functional connectivity, or blood flow. In addition, the neurologic impact of kidney disease comorbidities such as anemia and hypertension will be explored. We highlight aspects of our analytical approach that illustrate the challenges and opportunities posed by data of this scope. Discussion The NiCK study provides a unique opportunity to address key questions about the biological basis of neurocognitive deficits in chronic kidney disease. Understanding these mechanisms could have great public health impact by guiding screening strategies, delivery of health information, and targeted treatment strategies for chronic kidney disease and its related comorbidities

    Current Measures of PTSD for Children and Adolescents

    No full text

    Efficacy, safety, and pharmacokinetics of candesartan cilexetil in hypertensive children aged 6 to 17 years

    No full text
    This 4-week randomized, double blind, placebo-controlled study (N=240), 1-year open label trial (N=233), and single-dose pharmacokinetic study (N=22) evaluated candesartan cilexetil (3 doses) in hypertensive children aged 6 to 17 years. Seventy-one percent were 12 years of age or older, 71% were male, and 47% were black. Systolic (SBP)/diastolic (DBP) blood pressure declined 8.6/4.8-11.2/8.0 mm Hg with candesartan and 3.7/1.8 mm Hg with placebo (P.05). The response rate (SBP and DBP <95th percentile) after 1 year was 53%. The pharmacokinetic profiles in 6- to 12- and 12- to 17-year-olds were similar and were comparable to adults. Eight candesartan patients discontinued treatment because of an adverse event. Candesartan is an effective, well-tolerated antihypertensive agent for children aged 6 to 17 years and has a pharmacokinetic profile that is similar to that in adults
    corecore