15 research outputs found

    ROS release by PPARβ/δ-null fibroblasts reduces tumor load through epithelial antioxidant response.

    Get PDF
    Tumor stroma has an active role in the initiation, growth, and propagation of many tumor types by secreting growth factors and modulating redox status of the microenvironment. Although PPARβ/δ in fibroblasts was shown to modulate oxidative stress in the wound microenvironment, there has been no evidence of a similar effect in the tumor stroma. Here, we present evidence of oxidative stress modulation by intestinal stromal PPARβ/δ, using a FSPCre-Pparb/d <sup>-/-</sup> mouse model and validated it with immortalized cell lines. The FSPCre-Pparb/d <sup>-/-</sup> mice developed fewer intestinal polyps and survived longer when compared with Pparb/d <sup>fl/fl</sup> mice. The pre-treatment of FSPCre-Pparb/d <sup>-/-</sup> and Pparb/d <sup>fl/fl</sup> with antioxidant N-acetyl-cysteine prior DSS-induced tumorigenesis resulted in lower tumor load. Gene expression analyses implicated an altered oxidative stress processes. Indeed, the FSPCre-Pparb/d <sup>-/-</sup> intestinal tumors have reduced oxidative stress than Pparb/d <sup>fl/fl</sup> tumors. Similarly, the colorectal cancer cells and human colon epithelial cells also experienced lower oxidative stress when co-cultured with fibroblasts depleted of PPARβ/δ expression. Therefore, our results establish a role for fibroblast PPARβ/δ in epithelial-mesenchymal communication for ROS homeostasis

    The role of fibroblasts in cancer progression, therapy resistance and field cancerization

    No full text
    Cancer refers to a cluster of diseases that are characterized by uncontrolled neoplastic growth manifesting in a wide variety of tissues and organs. The malignant progression of cancer requires a permissive microenvironment comprising tumor supportive cells embedded within an altered extracellular matrix (ECM), collectively known as the reactive tumor stroma. Cancer-associated fibroblasts (CAFs) are the dominant cell type within the reactive tumor stroma, contributing mitogenic factors, reactive oxygen species (ROS), metabolic intermediates, ECM molecules and matrix remodeling enzymes that profoundly influence the aggressiveness of tumor epithelia and the tumor response to therapy. Most anticancer treatments to date are targeted at the tumor epithelia and neglect the critical roles played by CAFs. Moreover, tumor resistance and relapse are persistent challenges faced by patients and clinicians, suggesting an incomplete understanding of tumor-stroma co-evolution that severely limits the sustained efficacy of existing anticancer drugs. Herein, we explored the transcription-based programs that enable the protumorigenic effects of CAFs. Firstly, we focused on the expression profile of nuclear receptors in CAFs. Because nuclear receptors are a unique class of transcription factors whose activities are directly modulated by small molecule ligands, they hold untapped potential for CAF-directed anticancer therapy. We showed that tumor epithelia are sensitive to the nuclear receptor profile of CAFs. The overexpression or knockdown of specific nuclear receptors in CAFs resulted in the attenuation of one or more aggressive phenotypes in tumor epithelial cells, namely, proliferation, invasiveness, drug resistance, energy metabolism and oxidative stress. Furthermore, we identified androgen receptor and retinoic acid receptor β antagonists as useful adjuvants to cisplatin chemotherapy that attenuated chemoresistance in mice tumor xenografts. Given our observations that CAFs augment oxidative stress within the tumor microenvironment, we investigated whether the readily diffusible ROS, H2O2, could promote oncogenic transformation of adjacent normal epithelia and stromal fibroblasts. Indeed, epithelial cells at various stages of oncogenic transformation exhibited a differential response to H2O2 in terms of proliferation and invasiveness. Fibroblasts exposed to H2O2 also adopted a CAF-like state and became a source of H2O2 due to impaired TGFβ signaling that resulted in a defect in ROS detoxification. Importantly, oxidatively transformed fibroblasts retained their tumor-promoting capacity when adoptively transferred into tumor xenografts. Therefore, the findings reported in this thesis suggest that future anticancer therapies should consider the stromal context of tumors. Druggable features of CAFs such as their nuclear receptor expression and their pro-oxidant status can be targeted in combination with existing cytotoxic agents or antibody-based treatments to potentially improve patient outcomes.​Doctor of Philosophy (SBS

    Probing for protein-protein interactions during cell migration: limitations and challenges

    No full text
    Cellular migration is a fundamental biological process occurring as early as embryogenesis to the pathological state of cancer metastasis. Nearly all cellular migrations involve an extracellular signal that is transduced internally by members of a signalling cascade. These signal transduction events are driven by protein-protein interactions (PPIs) that coordinate intracellular activities to enable a cell to migrate. Understanding these PPIs will provide valuable insight into how cellular migration can be modulated perhaps towards a therapeutic end. Histologically, not many techniques are available to demonstrate PPIs. Contrasting agents only demonstrate the presence of a particular protein, and perhaps its co-localisation with another protein. Yet, co-localisation need not necessarily indicate physical interaction between the two proteins. In this review, we highlight four commonly used methods that continue to expand our understanding of PPIs underlying cell migration: co-immunoprecipitation, bimolecular fluorescence complementation, proximity ligation assay and surface plasmon resonance. The methods discussed herein allow for the study of PPIs in a wide variety of biological samples, including cell lysates, live cells, fixed cells and tissues, enabling the quantification of endogenous PPIs and exploration of the nature of PPIs. We also include a rudimentary framework for researchers to decide which experimental method best suits their research goals

    Conditional knock out of N-WASP in keratinocytes causes skin barrier defects and atopic dermatitis-like inflammation

    No full text
    Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously and regulates actin cytoskeleton remodeling. In order to characterize the role of N-WASP in epidermal homeostasis and cutaneous biology, we generated conditional N-WASP knockout mouse using CK14-cre (cytokeratin 14) to ablate expression of N-WASP in keratinocytes. N-WASPK14KO (N-WASP fl/fl ; CK14-Cre) mice were born following Mendelian genetics suggesting that N-WASP expression in keratinocytes is not essential during embryogenesis. N-WASPK14KO mice exhibited stunted growth, alopecia, dry and wrinkled skin. The dry skin in N-WASPK14KO mice is probably due to increased transepidermal water loss (TEWL) caused by barrier function defects as revealed by dye penetration assay. N-WASPK14KO mice developed spontaneous inflammation in the neck and face 10 weeks after birth. Histological staining revealed thickening of the epidermis, abnormal cornified layer and extensive infiltration of immune cells (mast cells, eosinophils and T-lymphocytes) in N-WASPK14KO mice skin compared to control mice. N-WASPK14KO mice had higher serum levels of IL-1α, TNF-α, IL-6 and IL-17 compared to control mice. Thus our results suggest that conditional N-WASP knockout in keratinocytes leads to compromised skin barrier, higher infiltration of immune cells and hyperproliferation of keratinocytes due to increased production of cytokines highlighting the importance of N-WASP in maintaining the skin homeostasis.MOE (Min. of Education, S’pore)Published versio

    Targeting nuclear receptors in cancer-associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors

    No full text
    Most anticancer therapies to date focus on druggable features of tumor epithelia. Despite the increasing repertoire of treatment options, patient responses remain varied. Moreover, tumor resistance and relapse remain persistent clinical challenges. These observations imply an incomplete understanding of tumor heterogeneity. The tumor microenvironment is a major determinant of disease progression and therapy outcome. Cancer-associated fibroblasts (CAFs) are the dominant cell type within the reactive stroma of tumors. They orchestrate paracrine pro-tumorigenic signaling with adjacent tumor cells, thus exacerbating the hallmarks of cancer and accelerating tumor malignancy. Although CAF-derived soluble factors have been investigated for tumor stroma-directed therapy, the underlying transcriptional programs that enable the oncogenic functions of CAFs remain poorly understood. Nuclear receptors (NRs), a large family of ligand-responsive transcription factors, are pharmacologically viable targets for the suppression of CAF-facilitated oncogenesis. In this study, we defined the expression profiles of NRs in CAFs from clinical cutaneous squamous cell carcinoma (SCC) biopsies. We further identified a cluster of driver NRs in CAFs as important modifiers of CAF function with profound influence on cancer cell invasiveness, proliferation, drug resistance, energy metabolism and oxidative stress status. Importantly, guided by the NR profile of CAFs, retinoic acid receptor β and androgen receptor antagonists were identified for concurrent therapy with cisplatin, resulting in the inhibition of chemoresistance in recurred SCC:CAF xenografts. Our work demonstrates that treatments targeting both the tumor epithelia and the surrounding CAFs can extend the efficacy of conventional chemotherapy.MOE (Min. of Education, S’pore)Published versio

    Conditional knockout of N-WASP in mouse fibroblast caused keratinocyte hyper proliferation and enhanced wound closure

    No full text
    Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice.MOE (Min. of Education, S’pore)Published versio

    ROS release by PPARβ/δ-null fibroblasts reduces tumor load through epithelial antioxidant response

    No full text
    Tumor stroma has an active role in the initiation, growth, and propagation of many tumor types by secreting growth factors and modulating redox status of the microenvironment. Although PPARβ/δ in fibroblasts was shown to modulate oxidative stress in the wound microenvironment, there has been no evidence of a similar effect in the tumor stroma. Here, we present evidence of oxidative stress modulation by intestinal stromal PPARβ/δ, using a FSPCre-Pparb/d−/− mouse model and validated it with immortalized cell lines. The FSPCre-Pparb/d−/− mice developed fewer intestinal polyps and survived longer when compared with Pparb/dfl/fl mice. The pre-treatment of FSPCre-Pparb/d−/− and Pparb/dfl/fl with antioxidant Nacetyl- cysteine prior DSS-induced tumorigenesis resulted in lower tumor load. Gene expression analyses implicated an altered oxidative stress processes. Indeed, the FSPCre-Pparb/d−/− intestinal tumors have reduced oxidative stress than Pparb/dfl/fl tumors. Similarly, the colorectal cancer cells and human colon epithelial cells also experienced lower oxidative stress when co-cultured with fibroblasts depleted of PPARβ/δ expression. Therefore, our results establish a role for fibroblast PPARβ/δ in epithelial–mesenchymal communication for ROS homeostasis

    Cancer-associated fibroblasts enact field cancerization by promoting extratumoral oxidative stress

    No full text
    Histological inspection of visually normal tissue adjacent to neoplastic lesions often reveals multiple foci of cellular abnormalities. This suggests the presence of a regional carcinogenic signal that spreads oncogenic transformation and field cancerization. We observed an abundance of mutagenic reactive oxygen species in the stroma of cryosectioned patient tumor biopsies, indicative of extratumoral oxidative stress. Diffusible hydrogen peroxide (H2O2) was elevated in the conditioned medium of cultured skin epithelia at various stages of oncogenic transformation, and H2O2 production increased with greater tumor-forming and metastatic capacity of the studied cell lines. Explanted cancer-associated fibroblasts (CAFs) also had higher levels of H2O2 secretion compared with normal fibroblasts (FIBs). These results suggest that extracellular H2O2 acts as a field effect carcinogen. Indeed, H2O2-treated keratinocytes displayed decreased phosphatase and tensin homolog (PTEN) and increased Src activities because of oxidative modification. Furthermore, treating FIBs with CAF-conditioned medium or exogenous H2O2 resulted in the acquisition of an oxidative, CAF-like state. In vivo, the proliferative potential and invasiveness of composite tumor xenografts comprising cancerous or non-tumor-forming epithelia with CAFs and FIBs could be attenuated by the presence of catalase. Importantly, we showed that oxidatively transformed FIBs isolated from composite tumor xenografts retained their ability to promote tumor growth and aggressiveness when adoptively transferred into new xenografts. Higher H2O2 production by CAFs was contingent on impaired TGFβ signaling leading to the suppression of the antioxidant enzyme glutathione peroxidase 1 (GPX1). Finally, we detected a reduction in Smad3, TAK1 and TGFβRII expression in a cohort of 197 clinical squamous cell carcinoma (SCC) CAFs, suggesting that impaired stromal TGFβ signaling may be a clinical feature of SCC. Our study indicated that CAFs and cancer cells engage redox signaling circuitries and mitogenic signaling to reinforce their reciprocal relationship, suggesting that future anticancer approaches should simultaneously target ligand receptor and redox-mediated pathways.MOE (Min. of Education, S’pore)Published versio

    Angiopoietin-like 4 Stimulates STAT3-mediated iNOS Expression and Enhances Angiogenesis to Accelerate Wound Healing in Diabetic Mice

    No full text
    Impaired wound healing is a major source of morbidity in diabetic patients. Poor outcome has, in part, been related to increased inflammation, poor angiogenesis, and deficiencies in extracellular matrix components. Despite the enormous impact of these chronic wounds, effective therapies are lacking. Here, we showed that the topical application of recombinant matricellular protein angiopoietin-like 4 (ANGPTL4) accelerated wound reepithelialization in diabetic mice, in part, by improving angiogenesis. ANGPTL4 expression is markedly elevated upon normal wound injury. In contrast, ANGPTL4 expression remains low throughout the healing period in diabetic wounds. Exogenous ANGPTL4 modulated several regulatory networks involved in cell migration, angiogenesis, and inflammation, as evidenced by an altered gene expression signature. ANGPTL4 influenced the expression profile of endothelial-specific CD31 in diabetic wounds, returning its profile to that observed in wild-type wounds. We showed ANGPTL4-induced nitric oxide production through an integrin/JAK/STAT3-mediated upregulation of inducible nitric oxide synthase (iNOS) expression in wound epithelia, thus revealing a hitherto unknown mechanism by which ANGPTL4 regulated angiogenesis via keratinocyte-to-endothelial-cell communication. These data show that the replacement of ANGPTL4 may be an effective adjunctive or new therapeutic avenue for treating poor healing wounds. The present finding also confirms that therapeutic angiogenesis remains an attractive treatment modality for diabetic wound healing.status: publishe

    Angiopoietin-like 4 Mediates Colonic Inflammation by Regulating Chemokine Transcript Stability via Tristetraprolin

    No full text
    Many gastrointestinal diseases exhibit a protracted and aggravated inflammatory response that can lead to hypercytokinaemia, culminating in extensive tissue damage. Recently, angiopoietin-like 4 (ANGPTL4) has been implicated in many inflammation-associated diseases. However, how ANGPTL4 regulates colonic inflammation remains unclear. Herein, we show that ANGPTL4 deficiency in mice (ANGPTL4−/−) exacerbated colonic inflammation induced by dextran sulfate sodium (DSS) or stearic acid. Microbiota was similar between the two genotypes prior DSS challenge. A microarray gene expression profile of the colon from DSS-treated ANGPTL4−/− mice was enriched for genes involved in leukocyte migration and infiltration, and showed a close association to inflamed ulcerative colitis (UC), whereas the profile from ANGPTL4+/+ littermates resembled that of non-inflamed UC biopsies. Bone marrow transplantation demonstrates the intrinsic role of colonic ANGPTL4 in regulating leukocyte infiltration during DSS-induced inflammation. Using immortalized human colon epithelial cells, we revealed that the ANGPTL4-mediated upregulation of tristetraprolin expression operates through CREB and NF-κB transcription factors, which in turn, regulates the stability of chemokines. Together, our findings suggest that ANGPTL4 protects against acute colonic inflammation and that its absence exacerbates the severity of inflammation. Our findings emphasize the importance of ANGPTL4 as a novel target for therapy in regulating and attenuating inflammation.MOE (Min. of Education, S’pore)Published versio
    corecore