7 research outputs found

    Ebolavirus proteins VP30, VP35, and VP40 are suppressors of RNA silencing.

    No full text
    <p>Cellular RNA interference requires the assembly of the Dicer:TRBP:PACT complex. VP30 inhibits RNAi by interacting with Dicer, preventing TRBP binding and complex activity. VP35 also inhibits complex assembly by binding TRBP and PACT, preventing their association with Dicer. VP40 suppresses RNAi during infection or when transferred to bystander immune cells through exosomes, though the mechanism by which VP40 inhibits the Dicer machinery is currently unknown. PACT, protein activator of the interferon-induced protein kinase; RNAi, RNA interference; TRBP, <i>Trans</i>-activation response RNA binding protein; VP, viral protein.</p

    Summary of ebolavirus protein roles.

    No full text
    <p>Summary of ebolavirus protein roles.</p

    Multiple roles of VP35 during virus replication.

    No full text
    <p>VP35 inhibits the type-I IFN response through several different mechanisms. VP35 can bind to dsRNA, preventing the activation of RIG-I signalling. In addition, VP35 blockade of IRF3 and IRF7 phosphorylation inhibits the production of IFN-β. Recent studies have also highlighted the importance of VP35 in regulating NP–RNA association. During viral genome replication, the VP35 N-terminal peptide binds to NP, enabling the vRNA to associate with the RdRp complex for replication. During virus assembly, VP35 disassociates, enabling NP to oligomerise, bind RNA, and form the nucleocapsid. 5’PPP, 5’ triphosphate; dsRNA, double-stranded RNA; IFN, interferon; IKK, inhibitor of nuclear factor kappa B kinase subunit epsilon; IRF, interferon regulatory factor; MAVS, mitochondrial antiviral-signalling protein; MDA5, melanoma differentiation-associated protein 5; NP, nucleoprotein; PACT, protein activator of the interferon-induced protein kinase; RdRp, RNA-dependent RNA polymerase; RIG-I, retinoic acid-inducible gene I; TANK, tumour necrosis factor–receptor-associated factor family member–associated nuclear factor kappa B activator; TBK1, tumour necrosis factor–receptor-associated factor family member–associated nuclear factor kappa B activator binding kinase 1; TRAF3, tumour necrosis factor–receptor-associated factor 3; VP, viral protein; vRNA, viral RNA.</p

    Phosphorylation status of 49 receptor tyrosine kinases.

    No full text
    <p>Receptor tyrosine kinase phosphorylation was determined by a commercial kit (Proteome Profiler Human Phospho-RTK Array Kit, R&D Systems, Abingdon, UK) with subsequent densitometric analysis using ImageJ software (<a href="http://imagej.nih.gov/ij/" target="_blank">http://imagej.nih.gov/ij/</a>). A) Receptor tyrosine kinase phosphorylation status expressed as fold change spot density relative to a control membrane area. Images of the membranes are presented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0172140#pone.0172140.s001" target="_blank">S1 Fig</a>. B) Differential phosphorylation of receptor tyrosine kinases that were found phosphorylated in at least one cell line (as indicated by a fold change spot density relative to a control membrane area >2) in SK-N-AS<sup>r</sup>OXALI<sup>4000</sup> or SK-N-AS<sup>r</sup>OXALI<sup>4000(-)</sup> cells relative to SK-N-AS.</p

    Effects of H1N1 influenza A virus infection on cell viability.

    No full text
    <p>Non-MYCN-amplified SK-N-AS neuroblastoma cells, SK-N-AS cells with acquired resistance to oxaliplatin (SK-N-AS<sup>r</sup>OXALI<sup>4000</sup>), SK-N-AS<sup>r</sup>OXALI<sup>4000</sup> cells that were passaged for 10 passages in absence of oxaliplatin (SK-N-AS<sup>r</sup>OXALI<sup>4000(-)</sup>), or MYCN-amplified UKF-NB-3 neuroblastoma cells were infected with H1N1 influenza strain A/WSN/33 virus at different multiplicities of infection (MOIs) and cell viability was determined 48h post infection relative to non-treated control. The dotted line indicates the viability of non-infected control cells. * P < 0.05 relative to non-infected control cells.</p

    Oxygen consumption by SK-N-AS and SK-N-AS<sup>r</sup>OXALI<sup>4000</sup> cells.

    No full text
    <p>Oxygen consumption was determined in intact cells in the absence of treatment (baseline), in response to oligomycin (8 μg/mL), an inhibitor of ATP synthase that causes a leak of protons resulting in inhibition of respiration (leak), and in response to FCCP (10 μM) that uncouples the electron transport chain resulting in maximum oxidative phosphorylation.</p
    corecore