66 research outputs found

    Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings

    Get PDF
    We describe an ultrathin solar cell architecture that combines the benefits of both plasmonic photovoltaics and traditional antireflection coatings. Spatially resolved electron generation rates are used to determine the total integrated current improvement under AM1.5G solar illumination, which can reach a factor of 1.8. The frequency-dependent absorption is found to strongly correlate with the occupation of optical modes within the structure, and the improved absorption is mainly attributed to improved coupling to guided modes rather than localized resonant modes

    Solar Cell Light Trapping beyond the Ray Optic Limit

    Get PDF
    In 1982, Yablonovitch proposed a thermodynamic limit on light trapping within homogeneous semiconductor slabs, which implied a minimum thickness needed to fully absorb the solar spectrum. However, this limit is valid for geometrical optics but not for a new generation of subwavelength solar absorbers such as ultrathin or inhomogeneously structured cells, wire-based cells, photonic crystal-based cells, and plasmonic cells. Here we show that the key to exceeding the conventional ray optic or so-called ergodic light trapping limit is in designing an elevated local density of optical states (LDOS) for the absorber. Moreover, for any semiconductor we show that it is always possible to exceed the ray optic light trapping limit and use these principles to design a number of new solar absorbers with the key feature of having an elevated LDOS within the absorbing region of the device, opening new avenues for solar cell design and cost reduction

    Light trapping beyond the 4n^2 limit in thin waveguides

    Get PDF
    We describe a method for determining the maximum absorption enhancement in thin film waveguides based on optical dispersion relations. For thin film structures that support one, well-confined guided mode, we find that the absorption enhancement can surpass the traditional limit of 4n^2 when the propagation constant is large and/or the modal group velocity is small compared to the bulk value. We use this relationship as a guide to predicting structures that can exceed the 4n^2 light trapping limit, such as plasmonic and slot waveguides. Finally, we calculate the overall absorption for both single and multimode waveguides, and show examples of absorption enhancements in excess of 4n^2 for both cases

    How Much can Guided Modes Enhance Absorption in Thin Solar Cells?

    Get PDF
    Absorption enhancement in thin metal-backed solar cells caused by dipole scatterers embedded in the absorbing layer is studied using a semi-analytical approach. The method accounts for changes in the radiation rate produced by layers above and below the dipole, and treats incoherently the subsequent scattering of light in guided modes from other dipoles. We find large absorption enhancements for strongly coupled dipoles, exceeding the ergodic limit in some configurations involving lossless dipoles. An antireflection-coated 100-nm layer of a-Si:H on Ag absorbs up to 87% of incident above-gap light. Thin layers of both strong and weak absorbers show similar strongly enhanced absorption
    • …
    corecore