3,116 research outputs found

    Simultaneous Measurement of Normal and Friction Forces Using a Cantilever-Based Optical Interfacial Force Microscope

    Get PDF
    We measured normal and friction forces simultaneously using a recently developed cantilever-based optical interfacial force microscope (COIFM) technique for studies of interfacial structures and mechanical properties of nanoscale materials. We derived how the forces can be incorporated into the detection signal using the classical Euler equation for beams. A lateral modulation with the amplitude of one nanometers was applied to create the friction forces between tip and sample. We demonstrated its capability by measuring normal and friction forces of interfacial water at the molecular scale over all distance ranges

    KinImmerse: Macromolecular VR for NMR ensembles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In molecular applications, virtual reality (VR) and immersive virtual environments have generally been used and valued for the visual and interactive experience – to enhance intuition and communicate excitement – rather than as part of the actual research process. In contrast, this work develops a software infrastructure for research use and illustrates such use on a specific case.</p> <p>Methods</p> <p>The Syzygy open-source toolkit for VR software was used to write the KinImmerse program, which translates the molecular capabilities of the kinemage graphics format into software for display and manipulation in the DiVE (Duke immersive Virtual Environment) or other VR system. KinImmerse is supported by the flexible display construction and editing features in the KiNG kinemage viewer and it implements new forms of user interaction in the DiVE.</p> <p>Results</p> <p>In addition to molecular visualizations and navigation, KinImmerse provides a set of research tools for manipulation, identification, co-centering of multiple models, free-form 3D annotation, and output of results. The molecular research test case analyzes the local neighborhood around an individual atom within an ensemble of nuclear magnetic resonance (NMR) models, enabling immersive visual comparison of the local conformation with the local NMR experimental data, including target curves for residual dipolar couplings (RDCs).</p> <p>Conclusion</p> <p>The promise of KinImmerse for production-level molecular research in the DiVE is shown by the locally co-centered RDC visualization developed there, which gave new insights now being pursued in wider data analysis.</p

    MolProbity: all-atom contacts and structure validation for proteins and nucleic acids

    Get PDF
    MolProbity is a general-purpose web server offering quality validation for 3D structures of proteins, nucleic acids and complexes. It provides detailed all-atom contact analysis of any steric problems within the molecules as well as updated dihedral-angle diagnostics, and it can calculate and display the H-bond and van der Waals contacts in the interfaces between components. An integral step in the process is the addition and full optimization of all hydrogen atoms, both polar and nonpolar. New analysis functions have been added for RNA, for interfaces, and for NMR ensembles. Additionally, both the web site and major component programs have been rewritten to improve speed, convenience, clarity and integration with other resources. MolProbity results are reported in multiple forms: as overall numeric scores, as lists or charts of local problems, as downloadable PDB and graphics files, and most notably as informative, manipulable 3D kinemage graphics shown online in the KiNG viewer. This service is available free to all users at http://molprobity.biochem.duke.edu

    ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a C_{60} device

    Get PDF
    We present an {\it ab initio} analysis of electron conduction through a C60C_{60} molecular device. Charge transfer from the device electrodes to the molecular region is found to play a crucial role in aligning the lowest unoccupied molecular orbital (LUMO) of the C60C_{60} to the Fermi level of the electrodes. This alignment induces a substantial device conductance of 2.2×(2e2/h)\sim 2.2 \times (2e^2/h). A gate potential can inhibit charge transfer and introduce a conductance gap near EFE_F, changing the current-voltage characteristics from metallic to semi-conducting, thereby producing a field effect molecular current switch

    Hydrogen and Helium Atoms and Molecules in an Intense Magnetic Field

    Get PDF
    We calculate the atomic structure of hydrogen and helium, atoms and molecules in an intense magnetic field, analytically and numerically with a judiciously chosen basis.Comment: 16 pages, 5 figures, to appear in Phys. Rev.
    corecore