37 research outputs found

    Genes2Networks: Connecting Lists of Proteins by Using Background Literature-based Mammalian Networks

    Get PDF
    In recent years, in-silico literature-based mammalian protein-protein interaction network datasets have been developed. These datasets contain binary interactions extracted manually from legacy experimental biomedical research literature. Placing lists of genes or proteins identified as significantly changing in multivariate experiments, in the context of background knowledge about binary interactions, can be used to place these genes or proteins in the context of pathways and protein complexes.
Genes2Networks is a software system that integrates the content of ten mammalian literature-based interaction network datasets. Filtering to prune low-confidence interactions was implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from “seed” lists of human Entrez gene names. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list. Genes2Networks is available at http://actin.pharm.mssm.edu/genes2networks.
Genes2Network is a powerful web-based software application tool that can help experimental biologists to interpret high-throughput experimental results used in genomics and proteomics studies where the output of these experiments is a list of significantly changing genes or proteins. The system can be used to find relationships between nodes from the seed list, and predict novel nodes that play a key role in a common function

    Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes.</p> <p>Results</p> <p>Genes2Networks is a software system that integrates the content of ten mammalian interaction network datasets. Filtering techniques to prune low-confidence interactions were implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from "seed" lists of human Entrez gene symbols. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list.</p> <p>Conclusion</p> <p>Genes2Networks is powerful web-based software that can help experimental biologists to interpret lists of genes and proteins such as those commonly produced through genomic and proteomic experiments, as well as lists of genes and proteins associated with disease processes. This system can be used to find relationships between genes and proteins from seed lists, and predict additional genes or proteins that may play key roles in common pathways or protein complexes.</p

    SNAVI: Desktop application for analysis and visualization of large-scale signaling networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of cellular signaling indicate that signal transduction pathways combine to form large networks of interactions. Viewing protein-protein and ligand-protein interactions as graphs (networks), where biomolecules are represented as nodes and their interactions are represented as links, is a promising approach for integrating experimental results from different sources to achieve a systematic understanding of the molecular mechanisms driving cell phenotype. The emergence of large-scale signaling networks provides an opportunity for topological statistical analysis while visualization of such networks represents a challenge.</p> <p>Results</p> <p>SNAVI is Windows-based desktop application that implements standard network analysis methods to compute the clustering, connectivity distribution, and detection of network motifs, as well as provides means to visualize networks and network motifs. SNAVI is capable of generating linked web pages from network datasets loaded in text format. SNAVI can also create networks from lists of gene or protein names.</p> <p>Conclusion</p> <p>SNAVI is a useful tool for analyzing, visualizing and sharing cell signaling data. SNAVI is open source free software. The installation may be downloaded from: <url>http://snavi.googlecode.com</url>. The source code can be accessed from: <url>http://snavi.googlecode.com/svn/trunk</url></p

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore