20 research outputs found

    Coupling a superconducting quantum circuit to a phononic crystal defect cavity

    Full text link
    Connecting nanoscale mechanical resonators to microwave quantum circuits opens new avenues for storing, processing, and transmitting quantum information. In this work, we couple a phononic crystal cavity to a tunable superconducting quantum circuit. By fabricating a one-dimensional periodic pattern in a thin film of lithium niobate and introducing a defect in this artificial lattice, we localize a 6 gigahertz acoustic resonance to a wavelength-scale volume of less than one cubic micron. The strong piezoelectricity of lithium niobate efficiently couples the localized vibrations to the electric field of a widely tunable high-impedance Josephson junction array resonator. We measure a direct phonon-photon coupling rate g/2π≈1.6 MHzg/2\pi \approx 1.6 \, \mathrm{MHz} and a mechanical quality factor Qm≈3×104Q_\mathrm{m} \approx 3 \times 10^4 leading to a cooperativity C∼4C\sim 4 when the two modes are tuned into resonance. Our work has direct application to engineering hybrid quantum systems for microwave-to-optical conversion as well as emerging architectures for quantum information processing.Comment: 9 pages, 7 figure

    A silicon-organic hybrid platform for quantum microwave-to-optical transduction

    Get PDF
    Low-loss fiber optic links have the potential to connect superconducting quantum processors together over long distances to form large scale quantum networks. A key component of these future networks is a quantum transducer that coherently and bidirectionally converts photons from microwave frequencies to optical frequencies. We present a platform for electro-optic photon conversion based on silicon-organic hybrid photonics. Our device combines high quality factor microwave and optical resonators with an electro-optic polymer cladding to perform microwave-to-optical photon conversion from 6.7 GHz to 193 THz (1558 nm). The device achieves an electro-optic coupling rate of 590 Hz in a millikelvin dilution refrigerator environment. We use an optical heterodyne measurement technique to demonstrate the single-sideband nature of the conversion with a selectivity of approximately 10 dB. We analyze the effects of stray light in our device and suggest ways in which this can be mitigated. Finally, we present initial results on high-impedance spiral resonators designed to increase the electro-optic coupling

    III/V-on-lithium niobate amplifiers and lasers

    Get PDF
    We demonstrate electrically pumped, heterogeneously integrated lasers on thin-film lithium niobate, featuring electro-optic wavelength tunability. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
    corecore