579 research outputs found

    The Rising Stellar Velocity Dispersion of M87 from Integrated Starlight

    Get PDF
    We have measured the line-of-sight velocity distribution from integrated stellar light at two points in the outer halo of M87 (NGC 4486), the second-rank galaxy in the Virgo Cluster. The data were taken at R = 480" (41.5\sim 41.5 kpc) and R = 526" (45.5\sim 45.5 kpc) along the SE major axis. The second moment for a non-parametric estimate of the full velocity distribution is 420±23420 \pm 23 km/s and 577±35577 \pm 35 km/s respectively. There is intriguing evidence in the velocity profiles for two kinematically distinct stellar components at the position of our pointing. Under this assumption we employ a two-Gaussian decomposition and find the primary Gaussian having rest velocities equal to M87 (consistent with zero rotation) and second moments of 383±32383 \pm 32 km/s and 446±43446 \pm 43 km/s respectively. The asymmetry seen in the velocity profiles suggests that the stellar halo of M87 is not in a relaxed state and confuses a clean dynamical interpretation. That said, either measurement (full or two component model) shows a rising velocity dispersion at large radii, consistent with previous integrated light measurements, yet significantly higher than globular cluster measurements at comparable radial positions. These integrated light measurements at large radii, and the stark contrast they make to the measurements of other kinematic tracers, highlight the rich kinematic complexity of environments like the center of the Virgo Cluster and the need for caution when interpreting kinematic measurements from various dynamical tracers.Comment: 16 pages, 5 figures; accepted for publication in The Astrophysical Journa

    Galaxy Kinematics With Virus-P: The Dark Matter Halo Of M87

    Get PDF
    We present two-dimensional stellar kinematics of M87 out to R = 238 '' taken with the integral field spectrograph VIRUS-P. We run a large set of axisymmetric, orbit-based dynamical models and find clear evidence for a massive dark matter halo. While a logarithmic parameterization for the dark matter halo is preferred, we do not constrain the dark matter scale radius for a Navarro-Frenk-White (NFW) profile and therefore cannot rule it out. Our best-fit logarithmic models return an enclosed dark matter fraction of 17.2(-5.0)(+5.0)% within one effective radius (R-e congruent to 100 ''), rising to 49.4(-8.8)(+7.2)% within 2 R-e. Existing SAURON data (R <= 13 ''), and globular cluster (GC) kinematic data covering 145 '' <= R <= 554 '' complete the kinematic coverage to R = 47 kpc (similar to 5R(e)). At this radial distance, the logarithmic dark halo comprises 85.3(-2.4)(+2.5)% of the total enclosed mass of 5.7(-0.9)(+1.3) x 10(12) M-circle dot making M87 one of the most massive galaxies in the local universe. Our best-fit logarithmic dynamical models return a stellar mass-to-light ratio (M/L) of 9.1(-0.2)(+0.2) (V band), a dark halo circular velocity of 800(-25)(+75) km s(-1), and a dark halo scale radius of 36(-3)(+7) kpc. The stellar M/L, assuming an NFW dark halo, is well constrained to 8.20(-0.10)(+0.05) (V band). The stars in M87 are found to be radially anisotropic out to R congruent to 0.5 R-e, then isotropic or slightly tangentially anisotropic to our last stellar data point at R = 2.4 R-e where the anisotropy of the stars and GCs are in excellent agreement. The GCs then become radially anisotropic in the last two modeling bins at R = 3.4 R-e and R = 4.8 R-e. As one of the most massive galaxies in the local universe, constraints on both the mass distribution of M87 and anisotropy of its kinematic components strongly inform our theories of early-type galaxy formation and evolution in dense environments.Astronom

    The MASSIVE Survey - I. A Volume-Limited Integral-Field Spectroscopic Study of the Most Massive Early-Type Galaxies within 108 Mpc

    Full text link
    Massive early-type galaxies represent the modern-day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ~100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* > 10^{11.5} Msun and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.Comment: 19 pages, 14 figures. ApJ (2014) vol. 795, in pres

    The MASSIVE Survey II: Stellar Population Trends Out to Large Radius in Massive Early Type Galaxies

    Full text link
    We examine stellar population gradients in ~100 massive early type galaxies spanning 180 < sigma* < 370 km/s and M_K of -22.5 to -26.5 mag, observed as part of the MASSIVE survey (Ma et al. 2014). Using integral-field spectroscopy from the Mitchell Spectrograph on the 2.7m telescope at McDonald Observatory, we create stacked spectra as a function of radius for galaxies binned by their stellar velocity dispersion, stellar mass, and group richness. With excellent sampling at the highest stellar mass, we examine radial trends in stellar population properties extending to beyond twice the effective radius (~2.5 R_e). Specifically, we examine trends in age, metallicity, and abundance ratios of Mg, C, N, and Ca, and discuss the implications for star formation histories and elemental yields. At a fixed physical radius of 3-6 kpc (the likely size of the galaxy cores formed at high redshift) stellar age and [alpha/Fe] increase with increasing sigma* and depend only weakly on stellar mass, as we might expect if denser galaxies form their central cores earlier and faster. If we instead focus on 1-1.5 R_e, the trends in abundance and abundance ratio are washed out, as might be expected if the stars at large radius were accreted by smaller galaxies. Finally, we show that when controlling for \sigmastar, there are only very subtle differences in stellar population properties or gradients as a function of group richness; even at large radius internal properties matter more than environment in determining star formation history.Comment: 17 pages, 9 figures, accepted by ApJ; resubmitted with updated reference

    The Stellar Halos of Massive Elliptical Galaxies II: Detailed Abundance Ratios at Large Radius

    Full text link
    We study the radial dependence in stellar populations of 33 nearby early-type galaxies with central stellar velocity dispersions sigma* > 150 km/s. We measure stellar population properties in composite spectra, and use ratios of these composites to highlight the largest spectral changes as a function of radius. Based on stellar population modeling, the typical star at 2 R_e is old (~10 Gyr), relatively metal poor ([Fe/H] -0.5), and alpha-enhanced ([Mg/Fe]~0.3). The stars were made rapidly at z~1.5-2 in shallow potential wells. Declining radial gradients in [C/Fe], which follow [Fe/H], also arise from rapid star formation timescales due to declining carbon yields from low-metallicity massive stars. In contrast, [N/Fe] remains high at large radius. Stars at large radius have different abundance ratio patterns from stars in the center of any present-day galaxy, but are similar to Milky Way thick disk stars. Our observations are thus consistent with a picture in which the stellar outskirts are built up through minor mergers with disky galaxies whose star formation is truncated early (z~1.5-2).Comment: ApJ in press, 12 pages, 6 figure

    Two-Component Fokker-Planck Models for the Evolution of Isolated Globular Clusters

    Get PDF
    Two-component (normal and degenerate stars) models are the simplest realization of clusters with a mass spectrum because high mass stars evolve quickly into degenerates, while low mass stars remain on the main-sequence for the age of the universe. Here we examine the evolution of isolated globular clusters using two-component Fokker-Planck (FP) models that include heating by binaries formed in tidal capture and in three-body encounters. Three-body binary heating dominates and the postcollapse expansion is self-similar, at least in models with total mass M <= 3 x 10^5 M_\odot, initial half-mass radius r_{h,i} >= 5 pc, component mass ratio m_2/m_1 <= 2, and number ratio N_1/N_2 <= 300 when m_2=1.4 M_\odot. We derive scaling laws for \rho_c, v_c, r_c, and r_h as functions of m_1/m_2, N, M, and time t from simple energy-balance arguments, and these agree well with the FP simulations. We have studied the conditions under which gravothermal oscillations (GTOs) occur. If E_{tot} and E_c are the energies of the cluster and of the core, respectively, and t_{rh} and t_c are their relaxation times, then \epsilon \equiv (E_{tot}/t_{rh})/(E_c/t_{rc}) is a good predictor of GTOs: all models with \epsilon>0.01 are stable, and all but one with \epsilon < 0.01 oscillate. We derive a scaling law for \epsilon against N and m_1/m_2 and compared with our numerical results. Clusters with larger m_2/m_1 or smaller N are stabler.Comment: 15 pages (LaTeX) with 8 figures. To appear in ApJ March 10, 1998 issu

    Regional seasonality of fire size and fire weather conditions across Australia's northern savanna

    Get PDF
    Australia's northern savannas have among the highest fire frequencies in the world. The climate is monsoonal, with a long, dry season of up to 9 months, during which most fires occur. The Australian Government's Emissions Reduction Fund allows land managers to generate carbon credits by abating the direct emissions of CO2 equivalent gases via prescribed burning that shifts the fire regime from predominantly large, high-intensity late dry season fires to a more benign, early dry season fire regime. However, the Australian savannas are vast and there is significant variation in weather conditions and seasonality, which is likely to result in spatial and temporal variations in the commencement and length of late dry season conditions. Here, we assess the temporal and spatial consistency of the commencement of late dry season conditions, defined as those months that maximise fire size and where the most extreme fire weather conditions exist. The results demonstrate that significant yearly, seasonal and spatial variations in fire size and fire weather conditions exist, both within and between bioregions. The effective start of late dry season conditions, as defined by those months that maximise fire size and where the most extreme fire weather variables exist, is variable across the savannas

    Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics

    Full text link
    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high resolution integral field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although 2/7 galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, gamma, are generally robust. The mean and standard deviation of the logarithmic slope for the population are gamma=0.67+/-0.10 when measured in the stars and gamma=0.58+/-0.24 when measured in the gas. We also find that the halos are not under concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. We investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. Determining the importance of these correlations will require further model developments and larger observational samples. (Abridged)Comment: 29 pages, 18 figures, 10 tables, accepted for publication in Ap
    corecore