20 research outputs found

    Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1.

    Get PDF
    Neurofibromatosis Type 1 (NF1) is a genetic disease caused by mutations in Neurofibromin 1 (NF1). NF1 patients present with a variety of clinical manifestations and are predisposed to cancer development. Many NF1 animal models have been developed, yet none display the spectrum of disease seen in patients and the translational impact of these models has been limited. We describe a minipig model that exhibits clinical hallmarks of NF1, including café au lait macules, neurofibromas, and optic pathway glioma. Spontaneous loss of heterozygosity is observed in this model, a phenomenon also described in NF1 patients. Oral administration of a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor suppresses Ras signaling. To our knowledge, this model provides an unprecedented opportunity to study the complex biology and natural history of NF1 and could prove indispensable for development of imaging methods, biomarkers, and evaluation of safety and efficacy of NF1-targeted therapies

    Timing of Smarcb1 and Nf2 inactivation determines schwannoma versus rhabdoid tumor development.

    Get PDF
    Germline mutations of the SMARCB1 gene predispose to two distinct tumor syndromes: rhabdoid tumor predisposition syndrome, with malignant pediatric tumors mostly developing in brain and kidney, and familial schwannomatosis, with adulthood benign tumors involving cranial and peripheral nerves. The mechanisms by which SMARCB1 germline mutations predispose to rhabdoid tumors versus schwannomas are still unknown. Here, to understand the origin of these two types of SMARCB1-associated tumors, we generated different tissue- and developmental stage-specific conditional knockout mice carrying Smarcb1 and/or Nf2 deletion. Smarcb1 loss in early neural crest was necessary to initiate tumorigenesis in the cranial nerves and meninges with typical histological features and molecular profiles of human rhabdoid tumors. By inducing Smarcb1 loss at later developmental stage in the Schwann cell lineage, in addition to biallelic Nf2 gene inactivation, we generated the first mouse model developing schwannomas with the same underlying gene mutations found in schwannomatosis patients. SMARCB1 mutations predispose to rhabdoid tumors and schwannomas but the mechanisms underlying the tumor type specificity are unknown. Here the authors present new mouse models and show that early Smarcb1 loss causes rhabdoid tumors whereas loss at later stages combined with Nf2 gene inactivation causes shwannomas

    Expanding the mutational spectrum of LZTR1 in schwannomatosis

    No full text
    Schwannomatosis is characterized by the development of multiple non-vestibular, non-intradermal schwannomas. Constitutional inactivating variants in two genes, SMARCB1 and, very recently, LZTR1, have been reported. We performed exome sequencing of 13 schwannomatosis patients from 11 families without SMARCB1 deleterious variants. We identified four individuals with heterozygous loss-of-function variants in LZTR1. Sequencing of the germline of 60 additional patients identified 18 additional heterozygous variants in LZTR1. We identified LZTR1 variants in 43% and 30% of familial (three of the seven families) and sporadic patients, respectively. In addition, we tested LZTR1 protein immunostaining in 22 tumors from nine unrelated patients with and without LZTR1 deleterious variants. Tumors from individuals with LZTR1 variants lost the protein expression in at least a subset of tumor cells, consistent with a tumor suppressor mechanism. In conclusion, our study demonstrates that molecular analysis of LZTR1 may contribute to the molecular characterization of schwannomatosis patients, in addition to NF2 mutational analysis and the detection of chromosome 22 losses in tumor tissue. It will be especially useful in differentiating schwannomatosis from mosaic Neurofibromatosis type 2 (NF2). However, the role of LZTR1 in the pathogenesis of schwannomatosis needs further elucidatio

    Rac1-Mediated DNA Damage and Inflammation Promote Nf2 Tumorigenesis but Also Limit Cell-Cycle Progression

    No full text
    Merlin encoded by the Nf2 gene is a bona fide tumor suppressor that has been implicated in regulation of both the Hippo-Yap and Rac1-Pak1 pathways. Using genetically engineered murine liver models, we show that co-deletion of Rac1 with Nf2 blocks tumor initiation but paradoxically exacerbates hepatomegaly induced by Nf2 loss, which can be suppressed either by treatment with pro-oxidants or by co-deletion of Yap. Our results suggest that while Yap acts as the central driver of proliferation during Nf2 tumorigenesis, Rac1 primarily functions as an inflammation switch by inducing reactive oxygen species that, on one hand, induce nuclear factor κB signaling and expression of inflammatory cytokines, and on the other activate p53 checkpoint and senescence programs dampening the cyclin D1-pRb-E2F1 pathway. Interestingly, senescence markers are associated with benign NF2 tumors but not with malignant NF2 mutant mesotheliomas, suggesting that senescence may underlie the benign nature of most NF2 tumors
    corecore