27 research outputs found

    Additional file 1: of Capsaicin-enriched diet ameliorates autoimmune neuritis in rats

    No full text
    Figure S1. Experimental design. Experimental overview shows (a) typical disease course in EAN; onset of symptoms between day 8 and 11 p.i.; peak of disease around day 16 p.i.; recovery phase with relief of symptoms around day 23 p.i. (b) Two start points of treatment (late preventive setting starts with day of immunization; early preventive setting imitates a long-term diet and starts 10 days before immunization). (c) Investigation overview at day 16 p.i. and day 23 p.i. (PDF 846 kb

    Additional file 2: of Capsaicin-enriched diet ameliorates autoimmune neuritis in rats

    No full text
    Figure S2. Capsaicin protects from demyelination: electrophysiological testing in recovery phase and maximum of the disease. (A) In recovery phase of EAN (d 23 p.i.), motor nerve conduction velocity (MNCV) showed a higher nerve conduction velocity in the treated group (50 μg/d). At the maximum of disease, there was no difference between the groups. (B) At disease maximum (d16), the mean compound muscle action potential (CMAP) of the sciatic nerve is more than 50% reduced in control group as an indicator of axonal damage. (C) At disease maximum (d16) F-wave latency was significantly prolonged in control group whereas both treatment groups did not show a prolongation of F-waves. In recovery phase (d23), the group treated with 50 μg/d also showed normal F-wave latencies. (PDF 675 kb

    Additional file 3: of Capsaicin-enriched diet ameliorates autoimmune neuritis in rats

    No full text
    Figure S3. Expression of CGRP in the sciatic nerve and regulatory T-lymphocytes in Peyer’s patches did not change. (A) Rats were daily force fed with capsaicin or rapeseed oil from day − 10 p.i. to day 16 p.i. (at expected disease maximum), sciatic nerves were isolated, and RT-PCR of calcitonin gene-related peptide CGRP was performed. Expression of CGRP did not changed significantly in RT-PCR. Mean values and SD were depicted (p = 0.0681, n = 45, n = 15/group, pooled data from three independent experiments). (B) FACS analyses did not show any change of CD4+CD25+FoxP3+ cell population in Peyer’s patches (n = 45, n = 15/group, pooled data from three independent experiments) (PDF 52 kb

    Confocal scanning laser (cSLO) infrared image illustrating semi-automatic measurement tool.

    No full text
    <p>Three concentrial circles (blue 3.2 mm, green 3.5 mm, red 3.8 mm) are placed around the optic disc. Vessel labelling marks arteries (a) and veins (v). Measurement lines (cyan) are defined by the software user. Additional measurement lines automatically produced by the software are shown exemplary in artery two (a2; set of five lines). Yellow lines separate superior (S), inferior (I), nasal (N) and temporal (T) quadrant.</p

    Retinal nerve fiber layer thickness (RNFL) measured by spectral-domain optical coherence tomography: healthy controls compared to CADASIL patients.

    No full text
    <p>(n) number of eyes.</p><p>*superior and inferior measurements were calculated based on data from nasal superior and temporal superior quadrants and from nasal inferior and temporal inferior quadrants respectively.</p><p>Retinal nerve fiber layer thickness (RNFL) measured by spectral-domain optical coherence tomography: healthy controls compared to CADASIL patients.</p

    Semi-automated vessel measurements based on confocal scanning laser ophthalmoscopy (cSLO): healthy controls compared to CADASIL patients.

    No full text
    <p>(n) number of total eyes; (v) number of total vessels; (n/a) too few vessels in the respective sector to calculate p-value.</p><p>Semi-automated vessel measurements based on confocal scanning laser ophthalmoscopy (cSLO): healthy controls compared to CADASIL patients.</p

    A–D Combined simultaneous confocal scanning laser ophthalmoscopy (cSLO) and spectral-domain optical coherence tomography (SD-OCT).

    No full text
    <p><b>A–B</b> Infrared cSLO image centered on the optic disc of a healthy control subject (A) and a CADASIL patient (B). Green circle indicates the position of corresponding SD-OCT scan. Light green section inferiorly on the circle marks the localization of corresponding SD-OCT scan shown aside. <b>C–D</b> Magnified SD-OCT scans of healthy control subject (C) and CADASIL patient (D) show sections of major retinal vessels appearing as a group of heterogeneous reflectivities in a round-shaped configuration. Asterisks mark the inner and outer reflections of arterial vessel walls and diamonds indicate inner and outer reflections of venous vessel walls. Hyperreflectivities representing the vessel walls seem thicker and more accentuated in the CADASIL patient. Particularly in veins, demarcation of the inferior vessel wall (towards the retinal pigment epithelium) often remains challenging due to absorption effects also seen as acoustical shadow underneath the vessel (towards the retinal pigment epithelium). Note the typical hour-glass shaped configuration within the vessel lumen in both subjects. Lateral vessel walls cannot be visualized as OCT laser beam is not projected perpendicularly to them.</p

    Data overview regarding manual retinal vessel measurements based on spectral-domain optical coherence tomography.

    No full text
    <p>(n) number of patients.</p><p>*measurements performed at 960 µm from the optic disc edge.</p>#<p>circular SD-OCT scan 3.5 mm in diameter.</p><p>Data overview regarding manual retinal vessel measurements based on spectral-domain optical coherence tomography.</p
    corecore