32 research outputs found
Recommended from our members
Tenofovir disoproxil fumarate induces peripheral neuropathy and alters inflammation and mitochondrial biogenesis in the brains of mice.
Mounting evidence suggests that antiretroviral therapy (ART) drugs may contribute to the prevalence of HIV-associated neurological dysfunction. The HIV envelope glycoprotein (gp120) is neurotoxic and has been linked to alterations in mitochondrial function and increased inflammatory gene expression, which are common neuropathological findings in HIV+ cases on ART with neurological disorders. Tenofovir disproxil fumarate (TDF) has been shown to affect neurogenesis in brains of mice and mitochondria in neurons. In this study, we hypothesized that TDF contributes to neurotoxicity by modulating mitochondrial biogenesis and inflammatory pathways. TDF administered to wild-type (wt) and GFAP-gp120 transgenic (tg) mice caused peripheral neuropathy, as indicated by nerve conduction slowing and thermal hyperalgesia. Conversely TDF protected gp120-tg mice from cognitive dysfunction. In the brains of wt and gp120-tg mice, TDF decreased expression of mitochondrial transcription factor A (TFAM). However, double immunolabelling revealed that TFAM was reduced in neurons and increased in astroglia in the hippocampi of TDF-treated wt and gp120-tg mice. TDF also increased expression of GFAP and decreased expression of IBA1 in the wt and gp120-tg mice. TDF increased tumor necrosis factor (TNF) α in wt mice. However, TDF reduced interleukin (IL) 1β and TNFα mRNA in gp120-tg mouse brains. Primary human astroglia were exposed to increasing doses of TDF for 24 hours and then analyzed for mitochondrial alterations and inflammatory gene expression. In astroglia, TDF caused a dose-dependent increase in oxygen consumption rate, extracellular acidification rate and spare respiratory capacity, changes consistent with increased metabolism. TDF also reduced IL-1β-mediated increases in IL-1β and TNFα mRNA. These data demonstrate that TDF causes peripheral neuropathy in mice and alterations in inflammatory signaling and mitochondrial activity in the brain
Differential expression of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in Alzheimer\u27s disease and HIV-1 associated neurocognitive disorders
The United Nations projects that one in every six people will be over the age of 65 by the year 2050. With a rapidly aging population, the risk of Alzheimer\u27s disease (AD) becomes a major concern. AD is a multifactorial disease that involves neurodegeneration in the brain with mild dementia and deficits in memory and other cognitive domains. Additionally, it has been established that individuals with Human Immunodeficiency Virus-1 (HIV-1) experience a 5 to 10-year accelerated aging and an increased risk of developing HIV-associated neurocognitive disorders (HAND). Despite a significant amount of clinical evidence pointing towards a potential overlap between neuropathogenic processes in HAND and AD, the underlying epigenetic link between these two diseases is mostly unknown. This study is focused on identifying differentially expressed genes observed in both AD and HAND using linear regression models and a more robust significance analysis of microarray. The results established that the dysregulated type 1 and 2 interferon pathways observed in both AD and HAND contribute to the similar pathologies of these diseases within the brain. The current study identifies the important roles of interferon pathways in AD and HAND, a relationship that may be useful for earlier detection in the future
Elevated Biomarkers of Inflammation and Vascular Dysfunction Are Associated with Distal Sensory Polyneuropathy in People with HIV
Distal sensory polyneuropathy (DSP) is a disabling, chronic condition in people with HIV (PWH), even those with viral suppression of antiretroviral therapy (ART), and with a wide range of complications, such as reduced quality of life. Previous studies demonstrated that DSP is associated with inflammatory cytokines in PWH. Adhesion molecules, essential for normal vascular function, are perturbed in HIV and other conditions linked to DSP, but the link between adhesion molecules and DSP in PWH is unknown. This study aimed to determine whether DSP signs and symptoms were associated with a panel of plasma biomarkers of inflammation (d-dimer, sTNFRII, MCP-1, IL-6, IL-8, IP-10, sCD14) and vascular I integrity (ICAM-1, VCAM-1, uPAR, MMP-2, VEGF, uPAR, TIMP-1, TIMP-2) and differed between PWH and people without HIV (PWoH). A cross-sectional study was conducted among 143 participants (69 PWH and 74 PWoH) assessed by studies at the UC San Diego HIV Neurobehavioral Research Program. DSP signs and symptoms were clinically assessed for all participants. DSP was defined as two or more DSP signs: bilateral symmetrically reduced distal vibration, sharp sensation, and ankle reflexes. Participant-reported symptoms were neuropathic pain, paresthesias, and loss of sensation. Factor analyses reduced the dimensionality of the 15 biomarkers among all participants, yielding six factors. Logistic regression was used to assess the associations between biomarkers and DSP signs and symptoms, controlling for relevant demographic and clinical covariates. The 143 participants were 48.3% PWH, 47 (32.9%) women, and 47 (33.6%) Hispanics, with a mean age of 44.3 ± 12.9 years. Among PWH, the median (IQR) nadir and current CD4+ T-cells were 300 (178–448) and 643 (502–839), respectively. Participants with DSP were older but had similar distributions of gender and ethnicity to those without DSP. Multiple logistic regression showed that Factor 2 (sTNFRII and VCAM-1) and Factor 4 (MMP-2) were independently associated with DSP signs in both PWH and PWoH (OR [95% CI]: 5.45 [1.42–21.00], and 15.16 [1.07–215.22]), respectively. These findings suggest that inflammation and vascular integrity alterations may contribute to DSP pathogenesis in PWH, but not PWoH, possibly through endothelial dysfunction and axonal degeneration
Caloric Restriction Mimetic 2-Deoxyglucose Reduces Inflammatory Signaling in Human Astrocytes: Implications for Therapeutic Strategies Targeting Neurodegenerative Diseases
Therapeutic interventions are greatly needed for age-related neurodegenerative diseases. Astrocytes regulate many aspects of neuronal function including bioenergetics and synaptic transmission. Reactive astrocytes are implicated in neurodegenerative diseases due to their pro-inflammatory phenotype close association with damaged neurons. Thus, strategies to reduce astrocyte reactivity may support brain health. Caloric restriction and a ketogenic diet limit energy production via glycolysis and promote oxidative phosphorylation, which has gained traction as a strategy to improve brain health. However, it is unknown how caloric restriction affects astrocyte reactivity in the context of neuroinflammation. We investigated how a caloric restriction mimetic and glycolysis inhibitor, 2-deoxyglucose (2-DG), affects interleukin 1β-induced inflammatory gene expression in human astrocytes. Human astrocyte cultures were exposed to 2-DG or vehicle for 24 h and then to recombinant IL-1β for 6 or 24 h to analyze mRNA and protein expression, respectively. Gene expression levels of proinflammatory genes (complement component 3, IL-1β, IL6, and TNFα) were analyzed by real-time PCR, immunoblot, and immunohistochemistry. As expected, IL-1β induced elevated levels of proinflammatory genes. 2-DG reversed this effect at the mRNA and protein levels without inducing cytotoxicity. Collectively, these data suggest that inhibiting glycolysis in human astrocytes reduces IL-1β-induced reactivity. This finding may lead to novel therapeutic strategies to limit inflammation and enhance bioenergetics toward the goal of preventing and treating neurodegenerative diseases
Recommended from our members
Transcriptomic analysis of brain tissues identifies a role for CCAAT enhancer binding protein β in HIV-associated neurocognitive disorder.
BackgroundHIV-associated neurocognitive disorders (HAND) persist in the era of combined antiretroviral therapy (ART) despite reductions in viral load (VL) and overall disease severity. The mechanisms underlying HAND in the ART era are not well understood but are likely multifactorial, involving alterations in common pathways such as inflammation, autophagy, neurogenesis, and mitochondrial function. Newly developed omics approaches hold potential to identify mechanisms driving neuropathogenesis of HIV in the ART era.MethodsIn this study, using 33 postmortem frontal cortex (FC) tissues, neuropathological, molecular, and biochemical analyses were used to determine cellular localization and validate expression levels of the prolific transcription factor (TF), CCAAT enhancer binding protein (C/EBP) β, in brain tissues from HIV+ cognitively normal and HAND cases. RNA sequencing (seq) and transcriptomic analyses were performed on FC tissues including 24 specimens from well-characterized people with HIV that had undergone neurocognitive assessments. In vitro models for brain cells were used to investigate the role of C/EBPβ in mediating gene expression.ResultsThe most robust signal for TF dysregulation was observed in cases diagnosed with minor neurocognitive disorder (MND) compared to cognitive normal (CN) cases. Of particular interest, due to its role in inflammation, autophagy and neurogenesis, C/EBPβ was significantly upregulated in MND compared to CN brains. C/EBPβ was increased at the protein level in HAND brains. C/EBPβ levels were significantly reduced in neurons and increased in astroglia in HAND brains compared to CN. Transfection of human astroglial cells with a plasmid expressing C/EBPβ induced expression of multiple targets identified in the transcriptomic analysis of HAND brains, including dynamin-1-like protein (DNM1L) and interleukin-1 receptor-associated kinase 1. Recombinant HIV-Tat reduced and increased C/EBPβ levels in neuronal and astroglial cells, respectively.ConclusionsThese findings are the first to present RNAseq-based transcriptomic analyses of HIV+ brain tissues, providing further evidence of altered neuroinflammation, neurogenesis, mitochondrial function, and autophagy in HAND. Interestingly, these studies confirm a role for CEBPβ in regulating inflammation, metabolism, and autophagy in astroglia. Therapeutic strategies aimed at transcriptional regulation of astroglia or downstream pathways may provide relief to HIV+ patients at risk for HAND and other neurological disorders